THE OXFORD HANDBOOK OF

TRUTH

Edited by

MICHAEL GLANZBERG

OXFORD UNIVERSITY PRESS
CONTENTS

List of contributors xi

Introduction 1

MICHAEL GLANZBERG

PART I ANCIENT AND MODERN THEORIES OF TRUTH

1. Plato and Aristotle on Truth and Falsehood 9

JAN SZAIF

2. Truth in the Middle Ages 50

MARGARET CAMERON

3. Early Modern Theories of Truth 75

ALAN NELSON

4. Idealism and the Question of Truth 93

CLINTON TOLLEY

PART II TRUTH IN EARLY ANALYTIC PHILOSOPHY

5. Truth in British Idealism and its Analytic Critics 125

THOMAS BALDWIN

PETER SULLIVAN AND COLIN JOHNSTON

7. Truth in Frege 193

RICHARD KIMBERLY HECK AND ROBERT MAY
PART III THE CLASSICAL THEORIES OF TRUTH

8. The Coherence Theory of Truth
 RALPH C. S. WALKER

9. The Correspondence Theory of Truth
 MARIAN DAVID

10. The Identity Theory of Truth
 STEWART CANDLISH AND NIC DAMNJANOVIC

11. The Pragmatist Theory of Truth
 CHERYL MISAK

PART IV TRUTH IN METAPHYSICS

12. Propositions and Truth-Bearers
 JEFFREY C. KING

13. Truthmakers
 ROSS P. CAMERON

14. A Logical Theory of Truth-Makers and Falsity-Makers
 NEIL TENNANT

15. Bivalence and Determinacy
 IAN RUMFITT

16. Truth, Objectivity, and Realism
 SANFORD SHIEH

17. Deflationist Truth
 JODY AZZOUNI

18. Truth in Fictionalism
 ALEXIS BURGESS

19. Relative Truth
 HERMAN CAPPELEN AND TORFINN THOMESSEN HUVENES

20. Truth Pluralism
 NIKOLAJ J. L. L. PEDERSEN AND MICHAEL P. LYNCH
PART V OTHER APPLICATIONS

21. The Moral Truth
Mark Schroeder
579

22. Truth and the Sciences
Anjan Chakravartty
602

23. Truth and Truthlikeness
Graham Oddie
625

24. Truth in Mathematics
Øystein Linnebo
648

PART VI FORMAL THEORIES AND PARADOX

25. Semantic Paradoxes: A Psychohistory of Self-Defeat
Roy A. Sorensen
669

26. Tarski on the Concept of Truth
Greg Ray
695

27. The Axiomatic Approach to Truth
Kentarou Fujimoto and Volker Halbach
718

28. Non-Classical Theories of Truth
Jc Beall and David Ripley
739

29. Contextual Theories of Truth and Paradox
Keith Simmons
755

Index
787
CHAPTER 28

NON-CLASSICAL THEORIES OF TRUTH

Jc BEALL AND DAVID RIPLEY

This chapter attempts to give a brief overview of non-classical(-logic) theories of truth. Due to space limitations, we follow a victory-through-sacrifice policy: sacrifice details in exchange for clarity of big-picture ideas. This policy results in our giving all too brief treatment to certain topics that have dominated discussion in the non-classical-logic area of truth studies. (This is particularly so of the “suitable conditional” issue: section 28.4.3.) Still, we present enough representative ideas that one may fruitfully turn from this chapter to the more detailed cited works for further study. Throughout—again, due to space—we focus only on the most central motivation for standard non-classical-logic-based truth theories: namely, truth-theoretic paradox (specifically, due to space, the liar paradox).

Our discussion is structured as follows. We first set some terminology concerning theories and logics; this terminology allows us to frame the discussion in a broad-but-clean fashion. (On the logic side, we present a very basic sequent system for truth and negation—and nothing more.) We then present a stripped-down version of the liar paradox. The paradox, as we set it up, turns on four basic rules (not including the truth rules; it’s the job of our target non-classical truth theories to preserve these in unrestricted form): two rules governing negation’s behavior, and two rules governing the “structure” of the validity relation itself. These four rules serve as choice points for the four basic theoretical directions that we sketch. While details, as warned above, are sacrificed for space and big-picture clarity, we hope that the discussion nonetheless charts the main directions of non-classical response to basic truth-theoretic paradox.
28.1 Theories and Logics

Since we’ll be considering a variety of logics in this chapter, it will help to first have some general tools to work with. We’ll adapt, and slightly broaden, the framework of Restall (2013) to this end. For purposes of framing our discussion, we take a theory to be a record of both what the given theorist—one who endorses the given theory—accepts and what she rejects (with respect to the given phenomena). Hence, we shall take a theory T to be a pair $\langle A, R \rangle$, where A and R contain what an endorser of T accepts and rejects, respectively.

For some kinds of theory, we might be able to figure out what must be in R by looking at A (e.g. each negation in A might correspond 1–1 to an entry in R), or vice versa. This is the usual situation with classical theories and classical logic: a classical theorist rejects something iff she accepts its negation. We shall look at two theories that have this feature (see sections 28.5.1 and 28.5.2). On the other hand, some theories may lack this feature: it might be that neither A nor R provides sufficient information to derive the other (e.g. negation might fail to track rejection). We shall look at two theories that have this feature (see sections 28.4.1 and 28.4.2).

Each sort of theory we discuss comes with a particular logical approach. We take logics, in “multiple-conclusions” guise, to constrain theories as follows, again herein agreeing with Restall (2005). The argument from premises Γ to conclusions Δ is valid (we write $\Gamma \vdash \Delta$) iff it’s out of logical bounds to adopt a theory $\langle A, R \rangle$ such that $\Gamma \subseteq A$ and $\Delta \subseteq R$. In short: a valid argument rules out certain theories, notably, those theories that accept all of the (valid) argument’s premises and reject all of its conclusions.1

Finally, the logics that we discuss all exhibit two familiar features:

- reflexivity: $A \vdash A$, for any claim A.
- monotonicity: let $\Gamma \subseteq \Gamma'$ and $\Delta \subseteq \Delta'$. If $\Gamma \vdash \Delta$, then $\Gamma' \vdash \Delta'$.

In terms of the interplay with theories, reflexivity tells us that no (logically acceptable) theory $\langle A, R \rangle$ involves overlap: $A \cap R = \emptyset$. In other words, logic, being reflexive, forbids theorists from both accepting and rejecting one and the same thing.2

For monotonicity, define a T-expanded theory to be any theory $T' = \langle A', R' \rangle$ achieved via superset: $A \subseteq A'$ and $R \subseteq R'$. Then monotonicity tells us that if (the given) logic rules out a theory T, it rules out every T-expanded theory too. In other words, if logic

1 That one of logic’s foundational roles in rational inquiry—particularly rational change in view (as Harman famously puts it) or especially theory expansion—is to proscribe certain theories (or constrain the space of “acceptable” ones) is not only a common idea, but also a very traditional one. Everything we say is compatible with the traditional proscriptive role of logic. We leave open whether logic has any interesting prescriptive role.

2 For an approach to paradox that does without this constraint, see Ripley (2013).
rules out accepting Γ while rejecting Δ, then adding more acceptances or rejections won't help.\(^3\)

28.2 Reasoning with Truth

Throughout the chapter, we use T as our truth predicate, and take $\langle A \rangle$ to be a singular term referring to the sentence A. We simply assume that each sentence A has some such name $\langle A \rangle$, without fussing about how $\langle A \rangle$ comes to refer to A; it can be a quote name, a proper name, a definite description, a Gödel code, or whatever.

There are various familiar principles or rules relating A to $T\langle A \rangle$; we consider three candidates: transparency, the T-schema, and capture and release.

28.2.1 Transparency

Transparency is the principle that A and $T\langle A \rangle$ are intersubstitutable with each other in all non-opaque contexts. Ignoring opaque contexts, then, transparency amounts to everywhere-intersubstitutability. This requires not only that A be equivalent to $T\langle A \rangle$, but also that $A \land (\neg B \supset T\langle C \rangle)$ be equivalent to $T\langle T\langle A \rangle \land T\langle \neg T\langle B \rangle \supset C \rangle \rangle$, and so on. In short, Ts can be added and subtracted willy-nilly, to whole formulas or subformulas. Let formulas that can be obtained from each other by adding and subtracting Ts be called T-variants.

The notion of equivalence in play can be specified in a few ways. As a constraint on theories, the most natural understanding is this: a theory $\langle A, \mathcal{R} \rangle$ obeys transparency iff for all A, if $A \in \mathcal{A}$ then every T-variant of A is in \mathcal{A} as well; and if $A \in \mathcal{R}$ then every T-variant of A is in \mathcal{R} as well. This results in A and all its T-variants being equivalent in argument; swapping formulas for their T-variants never makes a valid argument invalid or vice versa.

28.2.2 The T-schema

The T-schema is the schema $A \equiv T\langle A \rangle$, where \equiv is some biconditional or other—typically, in the first instance, a material biconditional (built from negation, disjunction, and conjunction in the usual way). Tarski (1944) offers this schema—in material-biconditional form—as a necessary condition on theories of truth: an adequate theory, he supposes, must have every instance of the T-schema as a theorem.

\(^3\) For convenience, we speak of accepting (set) Γ and rejecting (set) Δ, whereby—note well—we mean accepting everything in Γ and rejecting everything in Δ, respectively.
On our theory-directed interpretation of theoremhood, there are two ways to understand this: that a theory must accept all instances of the T-schema, or that it must not reject any instances of the T-schema. For our purposes, we don't spend too much time looking at the T-schema, as doing so requires thinking reasonably hard about the status of biconditionals, which we are mostly avoiding here. (See section 28.4.3 for as close as we come to this.)

28.2.3 Capture and release

Capture and *release* are argument forms or "rules of inference" or "extra-logical entailments" (entailments secured by a theory, rather than by logical vocabulary alone). Capture is the rule going from A to $T(A)$, the idea being that the truth predicate "captures" the "content" of A, and release is the converse, the rule from $T(A)$ to A. On our interpretation, capture rules out any theory that accepts A but rejects $T(A)$, and release rules out any theory that accepts $T(A)$ but rejects A. Given that logic is reflexive (see above), capture and release follow from transparency. (And if logic enjoys a "deduction theorem," the T-schema follows from capture and release; however, some of the logics discussed below do not enjoy a deduction theorem. See sections 28.4.1–28.4.3.)

Clearly, transparency, the T-schema, and capture and release have something in common, but they spell it out in different ways. The relations between them are sometimes non-obvious, and always depend on particular features of the background logic. But the core of all three ideas is that A and $T(A)$ can stand in for each other in various essential ways. In the non-classical theories sketched below, this core idea remains fixed: at the very least, truth obeys capture and release (if not also being transparent).

28.3 Paradox and Classical Logic

In many languages (all natural languages and some formal ones), a sentence can contain a singular term referring to that very sentence itself. For example, the sentence "This very sentence has twenty-three words" includes the singular term "this very sentence"; given a certain context, this term can refer to the sentence itself, rendering it false.

Our main concern in this section is a liar sentence λ which, one way or another, just is $\neg T(\lambda)$. In other words, λ is a sentence that says of itself (only) that it is not true. We can produce such a thing in any number of ways; we don't particularly worry about how the trick is pulled here.\(^4\) The liar causes its trouble by, in some sense, being able to stand in

\(^4\) For concreteness, we can take λ to be the sentence "The quoted sentence in footnote 4 is not true."
for its own negation. (The precise sense of standing in depends on which properties are taken to govern the truth predicate. We shall, for space reasons, pass over exact details.)

Reasoning classically, we can see that this causes trouble as follows: we cannot reject both the liar and its negation. But since it can stand in for its own negation, this means that we cannot reject both the liar and itself; in other words, we cannot reject it. On the other hand, we cannot accept both the liar and its negation. Since it can stand in for its own negation, this means we cannot accept both the liar and itself; in other words, we cannot accept it. Trouble seems to be afoot.

The classical principles invoked in the foregoing liar-paradoxical reasoning may be summarized as follows: 1) for any sentence, we cannot reject it together with its negation; 2) for any sentence, we cannot accept it together with its negation; 3) if we cannot reject a sentence together with itself, we cannot reject the sentence; 4) if we cannot accept a sentence together with itself, we cannot accept the sentence; and 5) if we cannot accept a sentence and cannot reject it, trouble is afoot.

28.3.1 The liar in sequent form

We proceed to make the given liar-paradoxical argument precise via a Gentzen-style sequent calculus. For our purposes, we needn't worry about conjunction, disjunction, a conditional, quantifiers, or any of that; the rules governing negation, along with the so-called structural rules, suffice to cause trouble. (We thus won't consider approaches, like supervaluational or subvaluational approaches, that hinge on fiddling with the behavior of conjunction and disjunction. See McGee 1991; van Fraassen 1968; 1970.)

Our sequents are things of the form \(\Gamma \vdash \Delta \), where \(\Gamma \) and \(\Delta \) are finite "multisets" of formulas. A multiset is just like a set, except things can be members of it multiple times, and it matters how many times something is a member (Meyer and McRobbie 1982a; 1982b). Thus, the multiset \([A, A]\) is different from the multiset \([A]\), even though the set \(\{A, A\}\) is the same set as \(\{A\}\). Multisets do not pay attention to order; thus, the multiset \([A, B]\) is the same multiset as \([B, A]\). In an argument with multiple premises, the premises are (as usual) interpreted conjunctively; multiple conclusions are dually interpreted disjunctively.

In our simple Gentzen system (our logic), we take as axioms all sequents of the form \(\Gamma, A \vdash A, \Delta\)

5 We set up our axioms with side premises \(\Gamma\) and side conclusions \(\Delta\) so that all the logics we consider will be monotonic: adding premises or conclusions can never make a valid argument invalid. Monotonicity does not seem to be implicated in any of the paradoxes of truth, so we hold it innocent here. (But note that Grishin 1982 finds trouble for monotonicity in a particular naïve set theory.)
First, the contraction rules:

\[\frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \] Contraction L

\[\frac{\Gamma \vdash A, A, \Delta}{\Gamma \vdash A, \Delta} \] Contraction R

These tell us that whenever we have multiple occurrences of a premise or a conclusion in a valid argument, the argument remains valid with just a single occurrence of that premise or conclusion. They preserve classical validity, and indeed play a key role in some sequent calculi for classical logic. In terms of theories, they tell us that accepting or rejecting something twice is no stronger than accepting or rejecting it once.

In addition to the two contraction rules (both structural rules), our liar-paradoxical reasoning also includes the following structural rule:

\[\frac{\Gamma \vdash A, \Delta, \Gamma', A \vdash A'}{\Gamma, \Gamma' \vdash \Delta, A'} \] Cut

Cut encodes a generalized form of the transitivity of our consequence relation: if \(B \) entails \(A \) and \(A \) entails \(C \), then the cut rule guarantees that \(B \) entails \(C \) directly; the formula \(A \) can be cut out, and argument may proceed directly from \(B \) to \(C \). Cut also preserves classical validity in the usual presentations. Unlike the contraction rules, however, the rule of cut is very frequently eliminable: it does not expand the stock of provable sequents. It merely provides shortcuts, allowing smaller derivations of some of the very same sequents. In terms of theories, cut is an extensibility condition: it tells us that if some commitments rule out rejecting \(A \), and other commitments rule out accepting it, then combining all of those commitments is ruled out. A theory doesn’t have to actually take a stand on \(A \); cut requires each theory to at least leave open some stand on \(A \).

Finally, our liar-paradoxical argument depends on operational rules, namely, rules governing the operator negation. We use the usual classical negation rules:

\[\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \] \(-L \)

\[\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \] \(-R \)

These rules encode the flip-flop behavior of classical negation. From the axiom \(A \vdash A \), they allow us to prove pivotal sequents:

- exclusion: \(A, \neg A \vdash \)
- exhaustion: \(\vdash A, \neg A \)

Exclusion, derived via \(-L \) and reflexivity, tells us that \(A \) and its negation may not be accepted together. The second, derived via \(-R \) and reflexivity, tells us that \(A \) and its negation may not be rejected together.
The foregoing axioms and rules are part of many usual sequent presentations of classical logic; they are enough to reconstruct the above argument for liar-paradoxical trouble, at least given rules governing truth (and the existence of a liar sentence, which we assume). For present purposes, we shall work with capture and release as our rules governing truth, even though the argument can be equally reconstructed with transparency or (given rules for \(\varepsilon, \) for some biconditional or other) the \(T \)-schema. To accommodate capture and release, we take as additional axioms every instance of the following two schemas:

- capture: \(\Gamma, A \vdash T(A), \Delta \)
- release: \(\Gamma, T(A) \vdash A, \Delta \)

With all of this in hand, the liar-paradoxical argument may be run as follows.

\[
\begin{align*}
\text{Contraction R:} & \quad p, T(\lambda) \vdash \lambda \\
& \quad p, \lambda, \neg T(\lambda) \vdash q \\
\text{Cut:} & \quad p \vdash q \\
\text{Contraction L:} & \quad \lambda \vdash T(\lambda), q \\
& \quad \lambda, \neg T(\lambda) \vdash q \\
& \quad \lambda \vdash q
\end{align*}
\]

(For the contraction steps, recall that \(\lambda \) just is \(\neg T(\lambda) \), so we genuinely are contracting two occurrences of the same sentence.) The resulting sequent \(p \vdash q \) is absurd: \(p \) and \(q \) are arbitrary, so a logic that delivers \(p \vdash q \) is one according to which anything (whatsoever) entails anything else (whatsoever). This, for our purposes, is completely unacceptable, and so something has to go.\(^6\) If we take the classical principles appealed to in this argument to be non-negotiable, then it's clear where the adjustment has to be: capture and release (and transparency and the \(T \)-schema, as they're implicated in related versions of this argument) must be given up, and so must any theory that entails them. A theory that maintains capture and release, then, must be backed by a logic that does not accept all of \(\neg \text{R}, \neg \text{L} \), contraction, and cut. As usual, relaxing logical principles opens space for new theories, theories that would be ruled out if stronger logical principles were held fast.

Here, we discuss four logical options in turn: 1) getting rid of \(\neg \text{R} \); 2) getting rid of \(\neg \text{L} \); 3) getting rid of cut; and 4) getting rid of contraction. These four logical options open up different sorts of space for a theory of truth to occupy. As part of our discussion, we also briefly sketch the sort of theory that can live in each kind of logical environment.

\(^6\) Some accept the conclusion (Azzouni 2006; Kabay 2010), but we won't rebut their arguments here. Our goal is to sketch some of the motivations for non-classical theories, and one such motivation is to avoid this trivialist conclusion.
28.4 Operational Approaches

Operational approaches are ones that target a particular operator (or class of operators) as the source of liar-paradoxical trouble. In our sample liar derivation above (see section 28.3.1), the only operator involved is negation. The directions of operational approaches that we shall present are those that target negation as the source of trouble—at least initially. (For the potential of additional trouble arising from Curry’s paradox, see section 28.4.3.)

28.4.1 Getting rid of \(\neg R \): paracomplete solutions

Getting rid of \(\neg R \) amounts to rejecting exhaustion; logical approaches that take this route are known as paracomplete. Such logics allow for paracomplete theories, where a theory \(T = (A, R) \) is paracomplete just if both \(B \) and \(\neg B \) are in \(R \) for some (but not all) sentence(s) \(B \). With respect to the liar, paracomplete theorists reject \(\lambda \) but also reject \(\neg \lambda \).

28.4.1.1 Excluded middle

Generally, provided that disjunction \(\lor \) exhibits standard behavior, paracomplete theorists reject excluded middle in the form

\[B \vdash A \lor \neg A \]

This is not to say that paracomplete theorists reject all instances of \(A \lor \neg A \). Such theorists might think—for extra-logical, certain theory-specific reasons—that, for some specific fragment of the language (e.g. \(T \)-free fragment, physics, some such), all instances of \(A \lor \neg A \) hold (Field 2008). But they reject that \(A \lor \neg A \) is logically true: that it holds via logic alone.

The failure of excluded middle affects the options for \(T \)-biconditionals in such theories. This topic is (briefly) discussed below (see section 28.4.3).

28.4.2 Getting rid of \(\neg L \): paraconsistent solutions

Getting rid of \(\neg L \) amounts to rejecting exclusion; logical approaches that take this route are known as paraconsistent. Such logics allow for paraconsistent theories, where a theory \(T = (A, R) \) is paraconsistent just if both \(B \) and \(\neg B \) are in \(A \) for some (but not all) sentence(s) \(B \).

7 In this chapter we ignore—with reluctance!—the distinction drawn in the literature between “paraconsistency” on the one hand and “dialetheism” or “glut theories” on the other. While this distinction is important much of the time, for present purposes it would simply distract.
28.4.2.1 Explosion

Generally, provided that conjunction \wedge exhibits standard behavior, paraconsistent theorists reject explosion in the form

$$A \wedge \neg A \vdash B$$

This is not to say that paraconsistent theorists accept all instances of $A \wedge \neg A$. Such theorists might think—for extra-logical, certain theory-specific reasons—that, for some specific fragment of the language (e.g. T-free fragment, physics, some such), all instances of $A \wedge \neg A$ fail to hold (Beall 2009). But they reject that $A \wedge \neg A$ is logically untrue: that it fails via logic alone.

The failure of explosion affects the options for T-biconditionals in such theories—a topic to which we now very briefly turn.

28.4.3 Suitable conditionals and Curry’s paradox

Our given paracomplete and paraconsistent theories wind up with a non-classical material conditional, where a material conditional $A \supset B$ is defined as $\neg A \lor B$.

- Paracomplete: $\forall A \supset A$.
- Paraconsistent: $A,A \supset B \neg \forall B$.

Hence, in either case, the resulting material conditional is often thought to be inadequate for purposes of underwriting the T-biconditionals. In the paracomplete case, the given conditional detaches (i.e. validates modus ponens) but fails to support all instances of the given (material) T-schema: $T(A) \supset A$ and its converse can fail. In the paraconsistent case, all instances of the given (material) T-schema hold; however, the given conditional fails to detach.

8 One easy way to establish such "inadequacies" is via a common (sound and complete) "semantics" for common such logics—e.g. strong Kleene or K3 (Kleene 1952; Beall and van Fraassen 2003) and LP (Asenjo 1966; Priest 1979; Beall and van Fraassen 2003). In short: let V contain all (total) maps v from sentences into $\{1,5,0\}$ such that $v(\neg A) = 1 - v(A), v(A \wedge B) = \min(v(A), v(B)),$ and $v(A \lor B) = \max(v(A), v(B))$. In the paracomplete K3 case, we say that $v \in V$ satisfies A just if $v(A) = 1$, and dissatisfies A otherwise. In the LP case, we say that $v \in V$ satisfies A just if $v(A) \in \{1,5\}$, and dissatisfies A otherwise. In both cases, we say that $v \in V$ satisfies a set Γ iff v satisfies each member of Γ, and $v \in V$ dissatisfies Γ if v dissatisfies all elements of Γ. Finally, we may define, for each of the given logics L, "semantic consequence" \vdash_L in the foregoing terms: $\Gamma \vdash_L \Delta$ if there's no $v \in V$ that satisfies Γ but dissatisfies Δ. Where L is taken to be K3, with (dis-)satisfaction defined as above, \vdash_L is paracomplete (as an easy exercise shows); and, dually, \vdash_L is paraconsistent where L is taken to be LP, with (dis-)satisfaction defined as above. (NB: we have actually given what we have elsewhere called K3* and LP*, respectively, in order to maintain uniformity with our multiple-conclusion-based discussion in sequent-calculus terms. See Beall 2011, 2013). Strictly speaking, K3 and LP are the single(collection)-conclusion limits of K3* and LP*, so understood.)
As a result of these apparent deficiencies, much of the work in paraconsistent and paracomplete responses to paradox has focused on supplementing such theories with a suitable conditional, one that both detaches and validates all T-biconditionals (Beall 2009; Field 2008; Priest 2006; Brady 2006). But the task is difficult. What makes the task particularly difficult is Curry’s paradox (Meyer et al. 1979), which involves (conditional) sentences that say of themselves (only) that if they are true then absurdity is true (e.g. that everything is true). In the material-conditional case, Curry’s paradox is nothing more than a disjunctive version of the liar (e.g. “Either I’m not true or absurdity is true”), which is already treated by standard paraconsistent or paracomplete approaches to the liar. But when a new “suitable conditional” has been added to the mix, Curry’s paradox is a distinct—and very, very difficult—problem (Myhill 1975). In fact, Curry’s paradox has often been regarded as the hardest obstacle in the path of “para-” solutions to paradox (Beall et al. 2006; Field 2008; Priest 2006).

For space reasons, we need omit discussion of the various avenues toward adding detachable, but Curry-paradoxical-safe, T-biconditionals to paracomplete and paraconsistent theories (Beall 2009; Brady 2006; Field 2008; Priest 2006). But we should mention a relatively unexplored alternative: simply accept the deficiencies of the material T-biconditionals, but respond to them in some other fashion. One approach is to devise a suitable non-monotonic logic, and try to “capture back” as much of the otherwise lost features of the T-biconditionals (Goodship 1996; Priest 1991). Another route is to move to a multiple-conclusion logic and an appropriate philosophy thereof (e.g. one that sees the work of “detachment” not in a detachable conditional but instead in extralogical principles that ground the inference from certain premises to certain conclusions) (Beall 2013; 2015). The viability of such approaches remains open.

28.5 Substructural Approaches

The above approaches work at the level of operational rules, in particular the rules governing negation. But classical negation is useful for many purposes. For example, as we’ve seen above, paracompletsists and paraconsistentists alike must reject the usual

9 Worth noting here is that in popular paracomplete logics such as strong Kleene, the material conditional fails to enjoy a deduction theorem. Example: $A \vdash A$ but $\not\vdash A \Rightarrow A$. On the other (dual) side, with the corresponding (dual) paraconsistent logic LP, the other direction of the deduction theorem fails: $\vdash (A \land (A \Rightarrow B)) \Rightarrow B$ but $\not\vdash A \land (A \Rightarrow B) \Rightarrow B$. In general, for Curry-paradoxical reasons, theories cannot have a deduction theorem for a detachable conditional—at least if the underlying structural rules contain both transitivity and contraction. (See 28.5 for more discussion.)

10 While we cannot discuss it, we should mention too that Curry’s paradox equally confronts “property theories” that purport to accommodate properties corresponding to each meaningful predicate—in short, each meaningful predicate picks out a property exemplified by all and only the objects of which the predicate is true. Having this sort of theory confronts Curry’s paradox in the (Russell-like) form of the property exemplified by all and only those things such that if they exemplify themselves, then absurdity follows.
understanding of the relations between acceptance, rejection, and negation: paracomplete theorists reject some \(A \) without thereby accepting \(\neg A \), while paraconsistent theorists accept some \(\neg A \) without thereby rejecting \(A \), and so on. In addition, the paracompletist loses the law of excluded middle, and the paraconsistentist loses explosion, both familiar and useful principles of inference. Finally, the loss of excluded middle or explosion removes much of the conditional flavor of the classical material conditional. For these reasons, an approach that allows us to proceed without losing so much might be thought superior over the para-accounts.

Here, we briefly outline two substructural approaches. These work at the level of the structural rules, so they allow for the maintenance of both \(\text{\neg L} \) and \(\text{\neg R} \), restoring much of the usefulness of classical negation and the classical material conditional. But they too are not without costs, as we note below.

28.5.1 Getting rid of cut: nontransitive solutions

The first substructural approach we consider retains the rules of contraction and dispenses with the rule of cut; this results in a nontransitive logic. On an approach like this, both of the sequents \(p \vdash \lambda \) and \(\lambda \vdash q \) are derivable, but without the rule of cut there is no way to derive \(p \vdash q \), so the disaster is averted at the very last step.

Nontransitive logics have been advanced in Weir (2005) and Ripley (2013) for handling truth-theoretic paradoxes. They block the problematic derivation, and they do so in a way that allows them to preserve classical operational rules.\(^\text{11}\) This allows the resulting logical systems to behave quite naturally in a number of ways.

By preserving the classical flip-flop behavior of negation, the nontransitive theorist also preserves the conditional flavor of the material conditional. Nontransitive logics, like the logic ST discussed in Ripley (2013) and Cobreros et al. (2014), can maintain the trinity which the para-approaches, in one way or another, abandon:

- \(\supset\text{-identity: } p \vdash A \supset A \)
- \(\supset\text{ modus ponens: } A, A \supset B \vdash B \)
- \(\text{deduction theorem: } \Gamma, A \vdash B, \Delta \iff \Gamma \vdash A \supset B, \Delta \).

Approaches that focus exclusively on operational rules not only must fail some of these for the material conditional, but in fact must fail some of these for any conditional, due to Curry paradox. (Proof: exercise, but use the above rules and standard structural rules, plus release and capture.) This means that nontransitive logics can make do with material conditionals and, in fact, material \(T \)-biconditionals: there is no need either to add

\(^{11}\) The system presented in Weir (2005) preserves many, but not all, classical operational rules; the system presented in Ripley (2013) preserves them all. As a result, we focus in this section on the latter system. Note that Weir's approach rejects the validity of \(p \vdash \lambda \) and \(\lambda \vdash q \); it works in a related but distinct way.
a separate “suitable conditional” or to learn to live with oddly behaved conditionals—unlike in the paracomplete and paraconsistent theories, which, as mentioned in section 28.4.3, must take one of these routes.

There is a reason why nontransitive logics can behave so classically. Recall that cut, unlike contraction, is eliminable in many presentations of (truth-free) classical logic; this means that it plays no essential role in any derivation. Anything that can be derived with it can also be derived without it. As our above liar-based argument shows, this is no longer true when the behavior of truth is accounted for; with capture and release on board, cut makes a genuine difference. However, it only makes a difference to derivations in which capture and release are involved; as a result, one can preserve every classically-valid argument in a nontransitive logic. As is shown in Ripley (2013), one can even ensure that all of these arguments extend to cover the full, truth-involving, language.

There is thus a clear sense in which such a nontransitive system is not non-classical: it validates every classically valid argument, in the full vocabulary of the language, including when a truth predicate is present. Nonetheless, the loss of transitivity is at least unfamiliar, and the motivations for adopting such a logic are very similar to many non-classicists’ motivations; there is an equally clear sense in which such an approach is non-classical. We won’t bother with the terminological question here.

As we sketched above, the rule of cut amounts to the following constraint on theories: every theory must leave open either accepting A or rejecting it. Ripley takes \(\lambda \) to provide a counterexample to this principle and thus to transitivity. Deriving \(\vdash \lambda \) thus tells us that it’s incoherent to reject \(\lambda \), and deriving \(\lambda \vdash \) that it’s incoherent to accept it. The nontransitivist of this stripe must neither accept nor reject \(\lambda \). This is the theory offered of \(\lambda \)'s paradoxicality: it cannot be accepted or rejected without incoherence. Unlike the operational approaches, this nontransitive theory maintains the equivalence between accepting \(\neg A \) and rejecting \(A \), and between rejecting \(\neg A \) and accepting \(A \). Thus, \(\neg \lambda \) too must be neither accepted nor rejected. In acceptance, then, this approach is like a paracomplete approach: it accepts neither \(\lambda \) nor \(\neg \lambda \). In rejection, it is like a paraconsistent approach: it rejects neither \(\lambda \) nor \(\neg \lambda \). However, given our above definitions, this theory is neither paracomplete nor paraconsistent.\(^{12}\)

28.5.2 Getting rid of contraction: noncontractive solutions

The other sort of substructural approach we’ll consider retains the rule of cut, and does without the rules of contraction. Such an approach is recommended and outlined in Beall and Murzi (2013); Shapiro (2010); and Zardini (2011). On a noncontractive

\(^{12}\) For a variant nontransitive theory that is both paracomplete and paraconsistent on the present definitions, see Ripley (2013).
approach, one can allow that the sequents \(p \vdash \lambda, \lambda \) and \(\lambda, \lambda \vdash q \) are derivable, but insist that the sequents \(p \vdash \lambda \) and \(\lambda \vdash q \) are not; this blocks the derivation of \(p \vdash q \).\(^{13}\)

Moreover, it blocks the derivation in a way that allows for the negation rules and the cut rule to be preserved. This allows the resulting logical systems to behave quite intuitively in a number of ways. By preserving the classical flip-flop behavior of negation, the noncontractive theorist, like the nontransitive theorist, preserves the conditional flavor of the material conditional. Noncontractive logics can thus also maintain all of \(\supset \)-equality, \textit{modus ponens}, and the deduction theorem.\(^{14}\)

If \& is the conjunction that reflects the operation of premise combination (multiplicative conjunction; see fn. 14), then it is no longer idempotent on a noncontractive logic; \(A \& A \) is stronger than \(A \) alone. Similarly, if \(\lor \) is the disjunction that reflects the operation of conclusion combination (multiplicative disjunction; see fn. 14), then it too is no longer idempotent; \(A \lor A \) is weaker than \(A \) alone. It is these differences that are exploited in the noncontractive approach to paradoxes. By arguments similar to those in section 28.3.1, we have both \(\vdash \lambda, \lambda \) and \(\lambda, \lambda \vdash \) without any uses of contraction. If \& and \(\lor \) are as above, this means we have \(\vdash \lambda \lor \lambda \) and \(\lambda \& \lambda \vdash \); i.e. \(\lambda \lor \lambda \) is a logical truth, and \(\lambda \& \lambda \) is explosive. Classically, this would be a problem, since classically \(A \lor A \) is equivalent to \(A \& A \). But noncontractively this is not so; since \(\lambda \lor \lambda \) is weaker than \(\lambda \& \lambda \), this is no trouble at all.

The noncontractive approach requires us to add subtlety to our account of theories. Recall that for the other approaches we consider, a theory is a pair of \textit{sets}: \(A \), the things accepted by the theory, and \(R \), the things rejected by the theory. We then said that \(\Gamma \vdash \Delta \) if it's ruled out to accept everything in \(\Gamma \) and reject everything in \(\Delta \). In a noncontractive logic, however, we can have \(\vdash A, A, \Delta \) without \(\vdash A, \Delta \): it can be that rejecting \(A \) twice is ruled out but rejecting \(A \) once is not. This means that, to specify a theory in a noncontractive logic in the corresponding way, we need to keep track of more than \textit{whether} something is accepted or rejected; we also need to keep track of \textit{how many times} it is accepted or rejected.

We do this as follows: a theory is still a pair \(\langle A, R \rangle \). Now, however, \(A \) and \(R \) are no longer sets; they are rather \(\omega \)-long \textit{sequences} of sets. We index them with natural numbers for easy reference: thus, \(A = \langle A_1, A_2, \ldots \rangle \), and \(R = \langle R_1, R_2, \ldots \rangle \). For any \(n \), \(A_n \) is the set of formulas that the theory in question accepts at least \(n \) times, and \(R_n \) is the set of formulas that the theory in question rejects at least \(n \) times. Given this set-up, we have \(A_1 \supset A_2 \supset \ldots \) and \(R_1 \supset R_2 \supset \ldots \). Now, we can extend our reading of logical consequence

\(^{13}\) If we try to use the rule of cut to combine \(p \vdash \lambda, \lambda \) and \(\lambda, \lambda \vdash q \), we can only cut out a single occurrence of \(\lambda \) from each sequent; we end up with \(p, \lambda \vdash \lambda, q \). This is no problem; in fact, it's an axiom!

\(^{14}\) Whether \(\supset \)-contraction is preserved depends on the precise rules used to govern \(\supset \). In the absence of contraction, conjunction, disjunction, and the conditional come in two distinct flavors each; these are sometimes called “additive” and “multiplicative” flavors. (In the presence of both monotonicity and contraction, these two flavors are equivalent.) Noncontractive approaches retain \(\supset \)-contraction for the additive \(\supset \), but not the multiplicative.
to noncontractive approaches. We say that $\Gamma \vdash \Delta$ if no theory can accept each thing in Γ as many times as it appears in Γ and reject each thing in Δ as many times as it appears in Δ.

Since the noncontractive approach maintains that $p \vdash \lambda, \lambda$, we have it that no theory can accept p even once and reject λ twice; however, since $p \not\vdash \lambda$, it's ok for a theory to accept p once and reject λ once. Similarly, since $\lambda, \lambda \vdash q$, no theory can accept λ twice and reject q, but since $\lambda \vdash q$, it's ok for a theory to accept λ once and reject q. Thus, the noncontractivist, on this reading, maintains that it's ok for a theory to accept λ and ok for a theory to reject it, so long as it only does one of the two, and only does it once. The natural question at this point is: how can it be that accepting or rejecting something once can be ok when accepting or rejecting it twice is out of bounds?

Actual noncontractivists have not tended to frame their views in terms of bounds on acceptance and rejection, so they have not offered an answer to this precise question. Thus we pause to very briefly sketch a few understandings of noncontractive consequence that have been offered. Zardini (2011) suggests that the liar sentence exhibits a kind of instability reminiscent in some ways of a revision theory. The idea is that from a single occurrence of λ one may derive (via the truth rules) $\neg \lambda$, but in the process of doing this the original occurrence of λ was destroyed; thus, we don't have λ and $\neg \lambda$ together, which is a good thing, since $A, \neg A \vdash$. On the other hand, if we have two occurrences of λ, we can use one to derive $\neg \lambda$. This may destroy it, but we still have another copy; we then have both λ and $\neg \lambda$ together, which entails anything, even though the liar on its own does not. Beall and Murzi (2013) suggest thinking of premises as resources to be drawn on in the course of a proof. If drawing on a premise uses it up, then again we can see why two occurrences can get us farther than one. In a similar vein, Mares and Paoli (2014) offer a picture of consequence as information extraction; if we need to use the information contained in a premise twice, that requires us to actually have the premise twice, on their view.

28.6 Conclusion

Classical logic (including cut) seems to rule out the possibility of giving a theory of truth that validates capture and release, or transparency, or the T-schema. In this chapter, we've looked at four ways to modify this logical background to open up space for such

15 Since \vdash is still reflexive and monotonic, we have it that no \mathcal{A} can overlap any \mathcal{R}; accepting something any number of times rules out rejecting it any number of times, and vice versa.

16 The noncontractive theorist had better not accept $p \vdash \lambda$, since then two cuts with the derivable sequent $\lambda, \lambda \vdash q$ would yield the unacceptable $p \vdash q$. Similarly, they had better not accept $\lambda \vdash q$, since then two cuts with the derivable sequent $p \vdash \lambda, \lambda$ would again yield the unacceptable $p \vdash q$. This is why the noncontractive approach quite crucially must go without both contraction on the left and contraction on the right; this contrasts with the operational approaches above, which only need to go without a single negation rule each, and can keep the other.
a theory of truth, and looked at the kinds of theory that fit most naturally with each modification. Two of the modifications were to the classical theory of negation; these paracomplete and paraconsistent approaches removed the requirements of exhaustiveness and exclusiveness, respectively. Relaxing exhaustiveness allows for rejecting both the liar and its negation; relaxing exclusiveness allows for accepting them both. Changing the theory of negation has effects on the theory of the material conditional as well, and these effects are a central focus of paracomplete and paraconsistent approaches (see section 28.4.3).

The other two modifications were to structural rules; noncontractive and nontransitive approaches can keep the full classical theory of negation, but must make adjustments elsewhere, either by supposing that two occurrences of the same premise or conclusion amount to more than a single occurrence, or else by supposing that logical consequence is nontransitive. Either way, these substructural solutions owe a theory of logical consequence that can make sense of these adjustments; we’ve tried to sketch what such theories might look like.

Our discussion has skipped over philosophical arguments for maintaining (unrestricted) capture and release, and also skipped over topics (and common terminology) of “gaps,” “gluts,” and more. These topics are all important, and have not been dealt with here purely on account of space constraints. We leave such topics to other discussion (Beall and Glanzberg 2008), including much of the work we’ve cited throughout.

References

