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ABSTRACT
Our goal in this paper is to extend counterfactual accounts of scientific expla-
nation to mathematics. Our focus, in particular, is on intra-mathematical
explanations: explanations of one mathematical fact in terms of another.
We offer a basic counterfactual theory of intra-mathematical explanations,
before modelling the explanatory structure of a test case using counterfac-
tual machinery. We finish by considering the application of counterpossibles
to mathematical explanation, and explore a second test case along these lines.

1. UNIFICATION
Call the explanation of one mathematical fact by another an intra-mathematical
explanation. To date, there has been a tendency to approach the topic of intra-
mathematical explanation by investigating the distinction between explanatory
and non-explanatory proofs (see, for instance, [Colyvan et al., 2018; Lange,
2014; Mancosu, 2001]). This is very natural since it is widely acknowledged that
some proofs are explanatory while others are not [Gowers and Neilson, 2009,
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p. 879]. Still, focussing exclusively on proofs as the only locus of explanation
in mathematics is a mistake [D’Alessandro, forthcoming; Lange, 2018]. That
would be to prejudice the question of where explanations in mathematics are
to be found.1

As with other cases of explanation, we should be asking ‘what makes a
particular explanation explanatory?’ Jumping to the question ‘which proofs are
explanatory?’ introduces a restriction on the theoretical options available for
understanding intra-mathematical explanation. For the time being, at least, we
should like to remain open-minded about where explanations in mathematics
reside.

Ultimately, then, what we seek is a theory of intra-mathematical expla-
nation that is capable of telling us how such explanations work, one that
avoids restricting itself from the outset to asking only after proofs. In this
paper, we explore a counterfactual approach. However, we will not be offer-
ing a full-blown counterfactual theory of intra-mathematical explanation just
yet. Instead, we will offer a preliminary theory and show that the explanatory
structure of intra-mathematical explanations can be modelled using counter-
factuals. This clears the way for the use of counterfactuals in coming to terms
with intra-mathematical explanation and thus for the development of a full
theory.

The prime motivation for our project is that of providing an account of
explanation that will work wherever explanations arise. In addition to intra-
mathematical explanations, there are at least two further varieties of explana-
tion that must be taken account of. The first of these is extra-mathematical
explanation: the explanation of a physical fact in part by mathematical facts
(see [Baker, 2005; Baron, 2014; Baron and Colyvan, 2016; Colyvan, 2001; 2002;
Lange, 2013; Lyon, 2012; Lyon and Colyvan, 2008] for discussion). The second
is physical explanation: the explanation of one physical fact by another (such
explanations tend to be causal [Strevens, 2008]; though perhaps not exclu-
sively [Sober, 1983]). Counterfactuals have been appealed to in attempts to
understand explanations of both kinds, most notably with respect to physical
explanation [Pearl, 2000; Woodward, 2003; Woodward and Hitchock, 2003],
but also with respect to extra-mathematical explanation [Baron, 2014; 2016;
forthcoming; Baron et al., 2017]. By extending the use of counterfactuals to
the intra-mathematical case, we therefore lay the groundwork for developing a
unified account of explanation in science.

Although counterfactuals are closely related to explanation in science, one
might resist the idea that counterfactuals enjoy a similar role within mathe-
matics. One way to press this point is to ask for evidence from mathematical
practice of such ties between counterfactuals and intra-mathematical explana-
tion. Fortunately there is such evidence, but a degree of caution is warranted

1Thomas [2017] makes this point in a more general way with respect to focusing too
much on the aesthetics of proofs: Colyvan [2012] makes the suggestion that explanation
in mathematics may arise in other places, such as domain extensions and reductions.
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here. One reason for caution is that mathematical explanation is not well under-
stood, and does not feature prominently in mathematics research papers. Talk
of explanation features more in discussions of mathematics (by both mathe-
maticians and philosophers) and in texts intended for teaching. Preliminary
textual analysis suggest that there are many such cases, particularly in peda-
gogical texts aimed at student understanding.2 Perhaps more important than
the question of whether mathematicians in fact employ counterfactuals in the
service of advancing explanation, is the normative question of whether mathe-
maticians ought to employ counterfactuals in this way (or at all). This is harder
to answer but a fruitful way forward is to see whether an appropriate account
of counterfactuals in mathematics can shed light on mathematical explanation.
The proof is in the pudding, as it were. In any case, this is the approach we
take here. It is also worth noting that we are not suggesting that our partic-
ular counterfactual approach is the only way to shed light on mathematical
explanation. We take this approach because it sits naturally with theories of
explanation outside of mathematics. There may be other ways to approach
mathematical explanation; nothing we say here rules out such alternatives, but
we leave the exploration of such alternatives for another occasion. Our aim is
to get one proposal suitably worked out and on the table for discussion.

We begin by briefly outlining a similarity-based approach to the truth of
mathematical counterfactuals, along with a very general decision procedure
for evaluating counterfactuals of this kind (§ 2). After that, we outline a par-
ticular case of mathematical explanation drawn from recent work by Marc
Lange [2014] and argue for three claims (§ 3). First, that there is counterfactual
dependence of the explanandum on the explanans in this case. Second, that the
counterfactual dependence within this particular case supports the asymmetry
of explanation and, third, that the case can be situated within a structural-
equation framework. We then turn our attention back to proofs and show that
patterns of counterfactual dependence in the case of intra-mathematical expla-
nation at issue reflect differences between explanatory and non-explanatory
proofs (§ 4). Finally, we extend our discussion of counterfactual approaches
to intra-mathematical explanation by considering a case involving impossible
mathematics (§ 5).

2. COUNTERFACTUALS
We adopt a closeness-based account of the truth-conditions for counterfactuals.
The standard closeness-based account provided by Lewis trivialises for math-
ematical counterfactuals [Lewis, 1973; Stalnaker, 1968]. Accordingly, we will
adopt an extension of that account that avoids triviality [Beall et al, 2012; Bern-
stein, 2016; Brogaard and Salerno, 2013; Jago, 2013; Vander Laan, 1997; 2004;
Lycan, 2001; Mares, 1997; Mares and Fuhrmann, 1995; Nolan, 2001; Priest,

2See [Reutlinger et al., MS] for a pilot corpus analysis, which turned up a number
of examples of counterfactuals and counterpossibles, many of these in the context of
explaining the mathematical results in question and many instances from distinguished
mathematicians (e.g., Terrence Tao [2016, p. 311]).
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2002].3 Such an account takes Lewis’s closeness-based semantics and extends
it across both possible and impossible worlds. The semantics can be stated as
follows:

Analysis 1 A �→ B is true at a world ω iff some possible or impossible world
in which both A and B are true is closer to ω than any possible or impossible
world in which A is true and B is false, if there are any possible or impossible
worlds in which A is true.

Following Lewis, we take the closeness of worlds to be a matter of similarity.
When it comes to mathematical counterfactuals, we are interested in similarity
with respect to mathematics. The closest worlds are, very roughly, the worlds
in which the mathematical facts are the most similar to our own world. More
carefully, we will focus on intrinsic similarity. Thus, the closest worlds are
the worlds in which the intrinsic features of the actual mathematical facts are
preserved. The extrinsic features, such as they are, do not make a difference to
the closeness between worlds.4 We will also assume Lewis’s duplication-based
notion of intrinsicality:

Property P is intrinsic iff, for any two duplicate things, either both have P
or neither does. [Lewis, 1983, pp. 355–356]

One might worry about extending Lewis’s similarity-based account of
counterfactuals to mathematics. The problem, in a nutshell, is that any coun-
terfactual variation to mathematics leads, inevitably, to inconsistency. This is
a problem, one might think, because the impossible worlds that we must order

3Of course, one might have some further reason for adopting a semantic theory that
delivers the triviality of the counterfactuals at issue. For some recent arguments in this
direction, see [Williamson, 2018]; and for rebuttals to those arguments, see [Berto et al.,
2018]. Arguments on both sides are reasonably well-rehearsed, and so we will not rehash
them here.

4Cards on the table: the focus on intrinsic similarity has been reverse-engineered from
the case we outline in the next section. Which is to say, we started from intuitions about
which counterfactuals are true, and then worked our way back to an account of similarity
that seems to deliver the right truth values. Methodologically, we take this to be broadly
in line with Lewis’s approach to counterfactuals, when he writes that:

The thing to do is not to start by deciding, once and for all, what we think about
similarity of worlds, so that we can afterwards use these decisions to test [Analysis
1]. What that would test would be the combination of [Analysis 1] with a foolish
denial of the shiftiness of similarity. Rather, we must use what we know about the
truth and falsity of counterfactuals to see if we can find some sort of similarity
relation — not necessarily the first one that springs to mind — that combines with
[Analysis 1] to yield the proper truth conditions. It is this combination that can
be tested against our knowledge of counterfactuals, not [Analysis 1] by itself. In
looking for a combination that will stand up to the test, we must use what we know
about counterfactuals to find out about the appropriate similarity relation—not
the other way around. [Lewis, 1979, p. 467]
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via closeness with respect to the actual world will be inconsistent worlds. But
such worlds, one might argue, are worlds in which everything and its negation
is true: they are trivial worlds. We are willing to accept, as a potential outcome
of our view, that the impossible worlds we must consider are inconsistent. We
deny, however, that the worlds are trivial. Such worlds are not closed under
a classical logic (which would lead to triviality) but, rather, are closed under
some contradiction-tolerant logic (such as ‘the Logic of Paradox’ developed
by Graham Priest). With such a logic in hand, we can imbue the impossible
worlds with a sufficiently rich structure so that there are all kinds of inconsis-
tent mathematical structures (which are more or less inconsistent, depending on
how many contradictions they feature). The truth of a mathematical counter-
factual can then be understood in terms of the closest inconsistent structures
when necessary: those that display a high degree of intrinsic similarity with
actual mathematics, despite being inconsistent.5

We recognise that there are other semantic theories of counterfactuals avail-
able, and other ways to understand the similarity between worlds. On some
other accounts, the particular case study that we develop in the next section
may not work out in the manner that we suggest.6 But we do not think that
this would be a terminal problem for the counterfactual approach to mathemat-
ical explanation, though it may be a reason to doubt the particular version of
that view developed in this paper. Even then, the application of the particular
similarity-based account that we develop would still have value as a ‘proof of
concept’ for the application of counterfactuals to mathematical explanations
more generally. This proof of concept provides a useful starting point for the
development of further counterfactual approaches in the future.

Having outlined an account of what makes mathematical counterfactuals
true, we will now offer a method of evaluating such counterfactuals. The eval-
uation of a counterfactual typically proceeds via the following imaginative
procedure. First, we hold fixed certain facts. The facts that are held fixed are
taken to be invariant under counterfactual change. Second, we alter as many
facts as we need to in order to make the antecedent of a given counterfactual
true. We call this ‘twiddling’. Third, we carry the implications of a twiddle
through the free facts — the facts we are not holding fixed. This is ‘ramifying’.
Ramifying typically proceeds via the facts that one is holding fixed. For one
will typically be holding fixed very general principles of some kind — usually

5For examples of inconsistent mathematics — approaches to mathematics that are
based on the use of inconsistent mathematical structures — see [Mortensen, 1995; Verdée,
2013; Weber, 2012].

6 In particular, it may be that a given counterfactual that appears to be intuitively
true turns out to be false on the account we are offering. Whether that is a problem
depends on the status of the intuitions about the counterfactual, or about the case of
explanation that the counterfactual is implicated in more generally. If the intuitions at
issue are free-floating intuitions about what appears to be true or false, then perhaps we
should reconsider the intuition in question in light of the theory. If, on the other hand,
those intuitions are embedded in mathematical practice, then some modification to the
counterfactual approach to explanation that we offer may be in order.
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laws — which tell us what the implications of various changes are for the free
facts.

Obviously, when evaluating a counterfactual we do not hold fixed the conse-
quent or the features that are mentioned in the consequent. But nor do we hold
fixed facts that are ‘downstream’ from the consequent. What it means for a
fact to be ‘downstream’ from the consequent depends on the counterfactual at
issue. For most ordinary counterfactuals, the ‘upstream’ facts are the temporal
facts that lie to the past of the antecedent, while the ‘downstream’ facts are
the facts that lie to the future of the consequent. The reason that we do not
hold fixed facts that are downstream of the consequent, is to allow space for the
ramification procedure to work. The ramification procedure just is the process
of working out the implications of a twiddle for these downstream facts. If we
hold these facts fixed, however, then we cannot ramify the counterfactual in
any non-trivial way.

To see this in action, suppose that one strikes a match and the match lights.
Now consider the counterfactual: if the match had not been struck, it would
not have lit. To evaluate this counterfactual, we hold fixed as much as we can
about the intrinsic nature of the match and as much as we can about the
laws of nature compatible with realising the antecedent. Thus, we hold fixed
the laws governing combustion and friction to ensure that the counterfactual
match behaves as much like the actual match as possible. We also hold fixed the
fact that the match is made of wood, that the head is coated with phosphorus
sulfide, that the match is a particular size and shape, since these are all intrinsic
properties of the match. We exclude scenarios in which the match is made of,
say, stone because they are not relevant to the counterfactual we are interested
in, and are not necessary for realising the antecedent of the counterfactual.
Holding fixed the relevant facts in this way, we then perform a twiddle: we
make whatever changes we need in order to prevent the match from being
struck. Finally, we carry the implications of the twiddle through facts that are
downstream of the consequent — which, in this case, are facts about the future
— via the physical laws of nature. If, post-ramification, the match lights anyway
despite never having been struck, then the counterfactual is false. If not, then
not.

The same broad picture applies to intra-mathematical counterfactuals. First,
we hold certain facts fixed. As in the ordinary, physical case, the goal when hold-
ing fixed is to try to ensure a high degree of intrinsic similarity between the
actual situation, and whatever counterfactual situations we end up consider-
ing.7 In the mathematical case, as in the non-mathematical case, this means
holding fixed as much as we can concerning the intrinsic properties of whatever

7 In an important sense the decision about what to hold fixed is context sensitive —
it is sensitive to the details of the counterfactual under consideration and the presumed
contrast class.
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mathematical features are mentioned in the antecedent of a given counterfac-
tual, compatible with realising the antecedent itself. The less we hold fixed
about the intrinsic properties of whatever we are interested in, the less confi-
dent we should be in the outcome of the evaluation procedure. That is because
the counterfactual situation we end up considering may bear little resemblance
to the actual scenario at issue in relevant respects (i.e., respects of intrinsic
similarity).

We recognise no analogous presumption in favour of holding fixed extrinsic
properties. This is so for two reasons. First, with respect to the features that
are mentioned in the antecedent, at least some of the extrinsic properties will
involve features that are mentioned in the consequent. If we hold fixed these
extrinsic properties, then we may end up holding fixed the very features that the
counterfactual aims to test, which will prevent the non-trivial ramification of
the twiddle. Second, extrinsic properties are not important for similarity. Since
the goal of holding fixed is to achieve a close match with respect to similarity,
holding fixed the extrinsic properties in this way is unnecessary. Worse: doing so
can skew the results of the evaluation procedure. A policy of generally holding
fixed the extrinsic properties of the features mentioned in the antecedent of a
counterfactual will restrict the ways of realising that antecedent to only those
situations in which the extrinsic properties are present. This allows for features
that are not relevant to the evaluation of the counterfactual to influence unduly
the outcome of the evaluation procedure.

We also hold as many general mathematical principles fixed as we can
(more on this in a moment). We do this for the same reason that we hold
fixed the physical laws when assessing an ordinary counterfactual: we want the
mathematical behaviour of the counterfactual situation to be as close to the
mathematical behaviour of the actual situation as possible. Next, we ‘twid-
dle’ mathematics by making whatever changes we need to make in order to
realise the truth of the antecedent. This may involve making some counter-
factual change to mathematics, such as making a counterfactual change to a
particular mathematical structure, or figure, or to a broad mathematical princi-
ple. Third, we carry the implications of the change that we have made through
the mathematical facts that are downstream of the consequent, via the general
mathematical principles that we are holding fixed.

As noted, there is a more or less natural division between the upstream and
the downstream facts in cases of ordinary counterfactuals. The division is due
to the underlying temporal structure of the universe. The mathematical case
lacks temporal structure; so it is less obvious what the relevant ‘downstream’
and ‘upstream’ facts might be, and thus it is perhaps less clear what we should
hold fixed and what we should permit to vary in this case. But while there
is no temporal structure, there is an analogous mathematical structure: nodes
in the structure correspond to mathematical facts, and the links in the struc-
ture are asymmetric relations of mathematical dependence: the dependence of
one mathematical fact on another. The facts that are ‘upstream’ from a given
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mathematical fact within such a structure, are the facts that the mathematical
fact depends on. The facts that are ‘downstream’ from a given mathematical
fact are the facts that depend upon that fact. When we carry forward the impli-
cations of a twiddle via the ramification procedure, we carry them through the
mathematical facts that are downstream in this sense.8

Note that some of the downstream facts will be general mathematical
principles. As noted, our recommendation is to hold fixed as many general
principles as we can. We can now sharpen this up using the distinction between
downstream and upstream facts. When evaluating a counterfactual with a
mathematical antecedent, we hold fixed as many general mathematical princi-
ples that are upstream of the mathematical fact in the antecedent as possible.
We do not hold fixed general mathematical principles that are downstream, so
that the twiddle has the space to ramify properly.

Because mathematical facts are usually thought to be necessary, the ‘twid-
dles’ we are considering sometimes involve impossibilities. There are a number
of objections one might raise against the idea of twiddling mathematics in this
way. We will mention the three most common, and gesture toward a response
in each case. This is well covered ground, so we shall be brief (for further
discussion, see [Baron et al., 2017]).

First objection: since some mathematical twiddles are impossible, we can-
not entertain the full range of alterations to mathematics at issue. However,
mathematical impossibilities are no less conceivable than impossibilities more
generally. Indeed, it is common to conceive of mathematical impossibilities, at
least when they are not yet known to be impossible. For example, we can con-
sider what things would be like if P = NP , and we can consider what things
would be like if P �= NP . One of these, however, is impossible; we simply do
not know which. The situation for things known to be impossible is no different.
Finding out that some mathematical statement is impossible might make some

8What is the relevant notion of mathematical dependence? It is tempting to think
of it as provability. However, there are many cases in which two mathematical facts can
be proved from each other; so provability does not give us a clean differentiation into
‘upstream’ and ‘downstream’ mathematical facts. One way forward is to accept that in
such cases of mutual inter-provability there is explanation in both directions. Alternatively,
one might supplement provability with a pragmatic constraint, such that only one direction
of provability is singled out for a particular explanatory purpose, and for the evaluation
of a particular counterfactual. In addition to provability, there are three further options.
First, one might appeal to mathematical laws. Just as there are causal laws that impute
particular asymmetric relations of causal dependence between facts — dependencies that
can then be used to differentiate past from future facts when evaluating counterfactuals
— so too might one think that there are mathematical facts that function as guiding
principles in much the same way. Second, one might appeal to a more metaphysical notion
of fundamentality, such as the recently popularised grounding relation. One might say
that the upstream facts are the ones that ground a given mathematical fact, and the
downstream facts are the ones that are grounded in that fact. Finally, one might appeal
to a notion of causation broad enough to apply to mathematical states of affairs, such as
the one deployed by Zardini [2019]. For present purposes, we leave the distinction between
upstream and downstream facts at an intuitive level.
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people more reluctant to conceive of what things would be like if it were true,
but it does not make anyone less able to do so.

Second objection: when we twiddle the mathematics we end up changing
the subject. For instance, suppose we consider what would have been the case,
had 13 not been prime. Here is one way to do this: imagine that 13 had 2 and
6 as factors. But then, someone might respond, we are not talking about 13
anymore; we are talking about, say, 12, or 18. So we have failed to consider a
situation in which 13 itself is not prime; instead, we’ve considered a situation
in which ‘13’ picks out some other number with 2 and 6 as factors.

The same worry can be raised of any counterfactual. Suppose we imagine
what would have been the case had Emmy Noether not been a mathematician.
But then, someone might respond, we are not talking about Emmy Noether
anymore; we’re talking about, say, Mary Whiton Calkins, or Juliette Adam. So
we have failed to consider a situation in which Emmy Noether was not a math-
ematician; instead, we have considered a situation in which ‘Emmy Noether’
picks out someone else. We take it to be clear that the objection has gone
wrong as an objection to counterfactuals involving Emmy Noether not being
a mathematician; we take it to be no less clear that the objection goes wrong
as an objection to counterfactuals involving 13 not being prime. We can be
sure that we are still talking about Emmy Noether because the person we are
considering bears enough similarities to Emmy Noether (this is the strategy
taken in [Lewis, 1973]). Similarly, it can be the case that we are still talking
about 13 because the number we are considering bears enough similarities to
13 (it comes after 12, before 14, has itself and 1 as factors, sums with 12 to
make 25 and so on).

Third objection: when you make twiddles in mathematics you inevitably
induce some contradiction; so the prospects for sensibly evaluating counterfac-
tuals involving mathematical facts are dim. There are two things to say here.
First, it is doubtful that contradictions are inevitable. Indeed, in §§ 3 and 4
we provide an example of counterfactual reasoning in mathematics that results
in no contradictions whatsoever. Second, there is a handy method available
for ‘chasing away’ contradictions. This is the same method used for ordi-
nary counterfactuals. First, hold fixed in the manner that we have suggested.
Next, make a twiddle. Finally, ramify through the facts that are downstream
of the consequent. If a contradiction ensues, hold less fixed and retwiddle. If
the ramification of the second twiddle also results in a contradiction, then
hold less fixed and so on until the ramification can be carried out consis-
tently. In short, to conduct the ramification, chase the contradictions out of the
structure.

That being said, when ‘chasing’ contradictions, you must hold enough fixed
to ensure that you are, in fact, evaluating the counterfactual you mean to be
evaluating. So, for instance, consider again the counterfactual: if the match had
not been struck, it would not have lit. When evaluating this counterfactual, we
need to hold fixed the fact that there is a match. Given that we are holding this
fact fixed, there are ways of preventing the match from being lit that we could
consider that would result in a contradiction. For instance, suppose we hold
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fixed that there is a match and then consider a scenario in which the match
does not light because it has disintegrated. Then we have a contradiction: there
both is and is not a match. In this type of situation we should not stop holding
fixed the fact that there is a match. Rather, we should consider a different kind
of scenario in which the match fails to light. In short, we are not recommending
a blanket policy to stop holding fixed whenever a contradiction is reached. This
policy of holding less and less fixed should not threaten the basic facts needed
to evaluate the counterfactual sensibly. This is true in non-mathematical cases,
and so it should be extended to mathematical cases as well.

Even if we hold enough fixed to ensure that we are in fact evaluating the
right counterfactual, one might still perceive a worry with this idea of ‘chas-
ing’ contradictions. Suppose we give chase to contradictions that arise out of
a twiddle on mathematics. Further, suppose that we chase the contradiction
away by holding less and less fixed, but doing so results in a very different
mathematical structure. In this situation, it may be that the counterfactual
mathematical structure we are considering is just too far from any actual
mathematical structure to give us much confidence in the outcome of the eval-
uation procedure. A counterfactual may be evaluated as true or false, but the
truth value is based on such a wildly different mathematical structure that it
is unclear what relevance that structure has for the actual mathematics we are
considering.

There is, then, a potential tension in our evaluation procedure. On the one
hand, we have recommended chasing contradictions out of a given mathematical
structure when attempting to evaluate a mathematical counterfactual. On the
other hand, we should not chase the contradictions out to the point that we
have completely changed the subject. This tension becomes a problem when
there is no way to ramify without inducing a contradiction somewhere. For in
this situation, it may be that the only way to chase contradictions out is to
consider a mathematical scenario that bears little resemblance to the actual
scenario. What we recommend, then, is a limited chasing procedure. Instead
of chasing the contradiction all the way through a mathematical structure, we
chase the contradiction out of the neighbourhood of the consequent. What this
means is that we push the contradiction far enough through the facts that are
downstream of the consequent to be able to see whether the consequent is true
or not given the twiddle that we have made.

This will, no doubt, involve leaving some contradictions in place, and so the
evaluation procedure recommends that we consider inconsistent mathematical
structures. What we are interested in, as noted, is the closest inconsistent struc-
ture: the one that is the most intrinsically similar to the actual mathematical
structure. One might worry that reasoning about inconsistent mathematical
structures is incoherent (quite apart from the metaphysical worry that the
structures themselves are incoherent, which is the problem considered above).
But, in fact, there has been a great deal of work in recent times to demonstrate
the coherence of such reasoning (see [Mortensen, 1995; Verdée, 2013; Weber,
2012]). To reason coherently about such structures, we recommend, as before,
using a non-classical logic that tolerates contradictions.
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3. INTRA-MATHEMATICAL EXPLANATION
Having outlined a strategy for evaluating counterfactuals within mathemat-
ics, we will now show how to model a particular case of intra-mathematical
explanation using counterfactual machinery. First, however, it is important to
say something about the relationship between counterfactuals and explanation.
For present purposes, we will adopt a very basic account of this relationship,
according to which explanation within mathematics is analysed in terms of
counterfactual dependence. This can be captured by the following very rough
counterfactual account of intra-mathematical explanation:

The Basic Counterfactual Account: A mathematical fact F explains another
mathematical fact G iff F �→ G and ¬F �→ ¬G.

The basic counterfactual account should be seen as a starting point for devel-
oping a more nuanced account of intra-mathematical explanation, rather than
a final theory. In the service of developing this basic account, we will now do
three things. First, we will show that the pattern of counterfactual dependence
in a particular case of intra-mathematical explanation reflects the explanatory
facts by showing that a counterfactual corresponding to the explanation in this
case is true. Second, we will show that the counterfactual dependence moves
from explanans to explanandum and not vice versa in this case and thus that
the asymmetry of explanation can be retained. Third, and finally, we will sit-
uate the case within a broader structural equation framework to bring the
approach in line with counterfactual accounts of scientific explanation more
generally.

Note that while we believe the counterfactual structure of the case that we
consider reflects explanatory intuitions about it, we could be wrong and the
counterfactuals may come apart from those intuitions. We do not see this as a
deep problem. While we believe that our intuitions about what is and is not an
explanation within mathematics should serve as a guide for developing a theory
of mathematical explanation, it may be that not every intuition can be cap-
tured by any theory.9 We should expect some intuitions to give way. When the
counterfactuals come apart from our intuitions for a particular case, we should
seek to apply the theory to a larger range of cases to test it. If the theory
works in most cases, then perhaps we should just conclude that our intuitions
are sometimes in error. In short, the development of a theory of mathematical
explanation is a process of bringing our intuitions into reflective equilibrium
with the theory, with an eye to maximising the fit between the theory and the
target phenomenon delineated by the intuitions. The start of that process with
respect to a counterfactual theory is the application of counterfactual mod-
elling techniques to particular cases. Our main aim in what follows is to show
that at least some intuitions about explanatory dependencies in mathematics
can be captured by an appropriate counterfactual structure. We will take the

9 Indeed, there may be disagreement about the intuitions in question.
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12 • Baron, Colyvan, Ripley

Fig. 1. Isosceles Trapezoid ABCD.

case in question to offer a genuine explanation but, again, nothing hangs on
this.

3.1. Counterfactual Dependence
The case that we will focus on is drawn from a recent book by Marc Lange
[2014]. Suppose that ABCD is an isosceles trapezoid such that AB is parallel
to CD, |AD| = |BC|, |AM | = |BK| and |ND| = |LC| (see Figure 1). Then, in
ABCD, |ML| = |KN |.

Why does |ML| = |KN |? The answer to this ‘why’ question lies with the
symmetry of the trapezoid at issue. The isosceles trapezoid ABCD is really the
same figure twice over, reflected along a line of symmetry that bisects the two
bases (see Figure 2). Because ABCD is reflected along this line of symmetry
|MO| = |KO|, and |NO| = |LO|. Thus, |MO + OL| = |KO + ON | and so
|ML| = |KN |. As Lange puts the point:

The theorem (that ML = KN) ‘makes sense’ in view of the figure’s overall
symmetry. Intuitively, a proof that fails to proceed from the figure’s sym-
metry strikes us as failing to focus on ‘what’s really going on’: that we
have here the same figure twice, once on each side of the line of symmetry.
Folding the figure along the line of symmetry, we find that NO coincides
with LO and that MO coincides with KO, so that MO + OL = KO +
ON, and hence ML = KN. [2017, pp. 246–247]

We will return to proofs later on. For now we wish to focus only on the explana-
tory structure of the situation: the reason why |ML| = |KN |. As already noted,
|ML| = |KN | because ABCD is symmetrical. We suggest that this explanation
is reflected in the counterfactual structure of the case. Consider the following
open shape: α. α is made up of all of the line segments that constitute the left-
hand side of ABCD across the line of symmetry. This includes the line segment
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Fig. 2. The Line of Symmetry in ABCD.

Fig. 3. The Open Shape α.

AD, the line segment AT , the line segment DS, the line segment from M to
the line of symmetry ST , and the line segment NO to the line of symmetry (see
Figure 3).

Now, consider the following counterfactual about the isosceles trapezoid
ABCD:

CF1 If, in ABCD, the open shape α had not been horizontally reflected,
then it would not have been the case that |ML| = |KN |.
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In order to evaluate this counterfactual, we use the method of evaluation
described above. We begin by holding fixed as much as we can about the intrin-
sic properties of any features mentioned in the antecedent of the counterfactual,
compatible with twiddling the antecedent.10 There are two such features men-
tioned: the trapezoid ABCD and the open shape α. With respect to α, we
should aim to hold as many of the intrinsic properties of that open shape fixed
as we can. Since duplicating α would mean duplicating all of the line segments
that make up that open shape, we must hold fixed the position, length, size,
and angle of every line segment featured. In short, all of α should be held fixed
to ensure the highest degree of similarity.

Indeed, given that the counterfactual is centrally about α, changing the
intrinsic properties of α would be like, in the match case, changing the intrinsic
properties of the match when we consider a scenario in which it is not struck.
While we can certainly consider such a scenario in which the match is made from
stone, that scenario is not similar enough to the actual scenario and the actual
match to give us any confidence in the outcome of the evaluation procedure.
Similarly, in the present case, if we allow the intrinsic nature of the open shape
α to change across the counterfactual scenarios that we are considering, we
should have less confidence in the outcome of the evaluation procedure. The
highest degree of confidence is associated with the highest degree of match
between the actual α and the counterfactual α. With respect to ABCD, by
contrast, we cannot hold fixed everything about that shape while also realising
the antecedent of CF1. For suppose that we do, then there will not be any way
to prevent the horizontal reflection of α in ABCD. Once we have relaxed some
of the features of ABCD, however, it is then possible to consider scenarios in
which α is not horizontally reflected. Of course, we still want to consider a
shape that is as similar to ABCD as possible, compatible with realising the
antecedent.

At first glance, it is not obvious how to realise the antecedent of CF1 without
also altering α. For example, suppose we prevent the horizontal reflection of α
in ABCD by moving the vertex B as in Figure 4.

By moving B in this way, we end up changing α. The same thing happens if
we move both B and C together along the x-direction, keeping their positions
in the y-direction fixed (see Figure 5). In this case, we change α by altering
the angles of the line segments MO and NO against AD.

The same result occurs if we leave B and C in place, and simply move K
and L up and down the line segment BC (see Figure 6).

There is, however, a way to prevent the horizontal reflection of α in ABCD
that fully preserves α. We must move BC in the x-direction and simultaneously
move K and L along the line segment BC (see Figure 7).

10As noted before, the decision about what to hold fixed will be guided by context here.
In particular, we are working within Euclidean geometry; so we must hold the underlying
geometry fixed.
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A Counterfactual Approach to Explanation • 15

Fig. 4. Moving B.

Fig. 5. Moving BC along the x-direction.

Figure 7 is the only consistent way of preventing the horizontal reflection
of α in ABCD while holding α itself fixed. There is no other consistent way
to make the antecedent of CF1 true, so long as α is being held fixed. Having
made this alteration to ABCD, we must now ramify that alteration through
the rest of the figure. It is clear, however, that no matter how this change is
implemented, the equality between |ML| and |KN | will be broken. That is
because, in order to keep α fixed we have to ensure that the interior angles of
�MNO remain unaltered when moving BC. But this means extending the line
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Fig. 6. Moving K and L along BC.

Fig. 7. Moving BC in the x-direction, and moving K and L along BC as
well.

segments ML and KN to keep them in step with BC as we move it. Because
of the angle of BC against the base CD, we will inevitably extend ML more
than KN , thus making ML longer than KN (this is straightforward to prove
algebraically). Because the only way of preventing the horizontal reflection of α
in ABCD breaks the equality between |ML| and |KN |, it follows that CF1 is
true: the only way of making the antecedent of that counterfactual true forces
the consequent to be true as well.
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3.2. Asymmetry
This completes the first stage of our modelling procedure. The next stage is to
show that there is an asymmetry within the pattern of counterfactual depen-
dence in this case that reflects the asymmetry of explanation. In order to show
this, we need to consider a second counterfactual, namely:

CF2 If it had not been the case that |ML| = |KN |, then, in ABCD, the
open shape α would not have been horizontally reflected.

In order to evaluate CF2, we hold fixed as much as we can regarding the
intrinsic properties of anything mentioned in the antecedent. Since the only
features mentioned in the antecedent are the line segments ML and KN , we
must hold the intrinsic properties of these two line segments fixed. Now, a line
segment is just a very simple open shape. As with other open shapes, then,
the key intrinsic properties of the line segment are its shape and size. Thus, an
alteration to the line segment that turns it into a curve, would be a change to
an intrinsic property. An alteration to the length of the line segment is another
change in its intrinsic properties. Rotating and moving the line segment, how-
ever, is not a change to its intrinsic properties. The line segment is the same
segment, whether it is oriented vertically, or horizontally so long as it links the
same two points. This is because the intrinsic properties of shapes in general
are preserved under rotation and translation. For instance, consider a simple
circle. Rotating or moving the circle through a two-dimensional plane, does not
alter the intrinsic nature of the circle. In order to duplicate the circle, we need
only duplicate its shape and size. We don’t need to also duplicate its relative
location.

Notice, however, that it is not an intrinsic property of either ML or KN that
the other line segment is present. For we can very easily imagine duplicating
ML without duplicating KN or vice versa. All we need to do is duplicate the
length and shape of the line segments in question. It follows that the intersection
of the two line segments is not an intrinsic property of ML or KN either, since
we can duplicate either line segment without the other and thus can duplicate
both line segments without duplicating their intersection. So when evaluating
CF2 we don’t hold fixed the fact that the two line segments intersect, or even
the location and rotation of the two line segments. We also don’t hold fixed
α — the line segments that make up the left-hand side of ABCD — or ABCD
more generally, since they fall into the consequent of the counterfactual.

Now, when evaluating CF2, we can’t hold fixed all of the intrinsic properties
of the two line segments. In order to realise the antecedent, we need to break the
equality between |ML| and |KN |, which means changing the length of one or
both of these line segments. Given this, the most straightforward way to realise
the antecedent is by holding fixed the size and shape of one of the line segments,
while altering the size of the other. This way of realising the antecedent results
in a situation where α is not horizontally reflected in ABCD (see Figure 8).

If this were the only way of realising the antecedent of CF2, then the coun-
terfactual would be true. But there is another option. By rotating the two
line segments, we can produce a situation in which one of the line segments is
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Fig. 8. |ML| �= |KN | in ABCD which is not bilaterally symmetric.

Fig. 9. |ML| �= |KN | in ABCD which is bilaterally symmetric; the length
of ML is the same as it is in actuality.

the same length as in actuality, while the other line segment is not (and thus
|ML| �= |KN |), but where α is horizontally reflected in ABCD (see Figure 9).

These two ways of realising the antecedent of CF2 involve changing the
intrinsic properties of one of the line segments in the same way, while keeping
the intrinsic properties of the other line segment fixed. So both options are
equally similar to the actual situation, in relevant respects. Without a basis for
privileging one of these options over the other (and, in particular, without a
basis for preferring the symmetry-breaking cases to the symmetry-preserving
cases) we cannot conclude that breaking the inequality between ML and KN
would undermine the symmetry of ABCD. It might break the symmetry, but
it might not, depending on exactly what we do. There is, then, an asymmetry
between CF1 and CF2. For CF1, there is really only one salient case in which
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we can make the antecedent true while maximising intrinsic similarity, and
in that case the consequent is true as well. For CF2, there are two classes of
cases in which the antecedent is true that equally maximise intrinsic similarity,
and no clear way to choose between them. This asymmetry of counterfactual
dependence, we submit, reflects the asymmetry of explanation.

3.3. Structural Equation Modelling
In order to complete our modelling procedure we will show how to apply
the standard tools of structural equation modelling to intra-mathematical
explanation. We will briefly outline a structural equation model for the intra-
mathematical explanation outlined above before dialling up the complexity of
the model. First, however, it is important to address a general worry with the
use of structural equations in this context.

Structural equations are themselves pieces of mathematics. So consider a
particular intra-mathematical relationship that the structural equations are
being used to encode. That relationship will, in line with the broad strategy for
evaluating counterfactuals used above, involve twiddling some aspect of math-
ematics in order to see how that twiddle ramifies. All together the structural
equations map the ramifications of the relevant twiddle. But what if the twid-
dle ramifies into the very mathematical facts that underwrite the structural
equations themselves? Would this not undermine the entire structural equation
framework?

The worry is based on a confusion. When we talk about ‘twiddling’ math-
ematics, we are not proposing to make the mathematical facts other than
they are; we’re not capable of doing any such thing. This is no different from
non-mathematical cases; in evaluating “If Emmy Noether had not been a math-
ematician, she would have been a poet”, we do not need to make it the case that
Emmy Noether was not a mathematician! We are rather proposing to consider
what would be the case if the mathematical facts were other than they are. But
in our use of structural equation models, we are using actual mathematics, not
counterfactual mathematics. It is no part of our proposal to consider what the
structural equation models would tell us under the twiddles we consider. We
are rather asking what these models do tell us about those twiddles and how
they ramify. So there is no problem; the structural equations themselves remain
unchanged by the twiddles under consideration.

3.4. A Basic Model
The model we will use to represent counterfactual relationships for the isosceles
trapezoid ABCD is depicted in Figure 10. Each node in the diagram is a full
proposition; each can be true or false. The initial model is designed to reflect
the basic explanation for why it is that |ML| = |KN | offered above. The point
of the model in the first instance is to render a broad picture of the details of
the case itself, and thus show how the modelling process works.
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Fig. 10. Directed graph model of the explanation for |ML| = |KN |.

First of all, we provide a translation schema for the endogenous nodes. These
are nodes that appear within the structural equation model and which represent
the mathematical facts featured in the explanation. The translation schema is
this:

A α is horizontally reflected.
B |ML| = |KN |.

With the translation schema in hand, we can then model the counterfactual
relationships using the directed graph depicted in Figure 10. Each node in the
diagram takes value 1 or 0, according to whether the proposition it represents is
true or false, respectively. We suppose that all the exogenous nodes take value
1. The structural equations we use are simple: each endogenous node takes the
value(s) of the node(s) that feed into it. Thus, we have the following structural
equations for the case at hand: A = 1, B = A.

The structural equation model captures the twiddles to mathematics
involved in evaluating CF1 in the previous section. Suppose that we twiddle
node A by setting its value to 0. Then the value of B must also go to 0. The
directed nature of the graph captures the asymmetry of the counterfactual
dependence between B and A and thus between the fact that |ML| = |KN |
and the fact that α is reflected across ST in ABCD.

3.5. Adding Complexity
The structural equation model that we have outlined is, obviously, quite simple.
We can add complexity to the model in the same manner that we might add
complexity to a simple structural equation model for a causal explanation. The
most straightforward way to add complexity is to make the nodes non-binary.
We can, for example, treat the nodes as representing continuous variables.
Doing so allows us to take account of the relationship between explanans and
explanandum with more sensitivity.11

As noted, we are interested in what happens to the relationship between the
lengths |ML| and |KN | when asymmetry is introduced into the figure ABCD.
As already discussed, the only way to make ABCD asymmetric whilst holding
α fixed is to move the line segment BC in the x-direction, letting the vertices
K and L move in step. So we can use the length |AB| as a proxy for altering

11 It is common to treat the nodes in a structural equation model as representing the
range of real values between 0 and 1. This is so that the nodes can be taken to represent
probabilities. In his treatment of the structural equation framework, however, Pearl makes
it clear that the values of the nodes can correspond to any quantity (e.g., length; see [Pearl,
2000]). We follow Pearl in this.
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Fig. 11. Setting up the Problem.

the figure ABCD in the required manner. As AB gets longer the difference
between |ML| and |KN | should get larger. A structural equation model can
then be used to capture the pattern of counterfactual dependence between, on
the one hand, the difference |ML| − |KN | and, on the other hand, the amount
of extra length being added to the distance |AB|. We thus introduce two nodes:

A The length that is added to |AB|.
B The difference between the lengths |ML| and |KN |.

The structural equation can be determined as follows. First, it is useful to
imagine a horizontal line segment MK parallel with AB, and another horizontal
line segment NL, also parallel with AB. Call the point where the horizontal
line segment from M intersects with the line of symmetry, ST , E and the point
where the horizontal line segment from N intersects with ST , G (see Figure 11).
Next, drop a perpendicular from B to the base CD. Finally, call the point where
the perpendicular intersects the horizontal line segment from M , F , and call
the point where the perpendicular intersects the horizontal line segment from
N , H.

Let x be the difference in lengths |ML| − |KN | and y represent the amount
of distance added to the base AB. The problem is to specify x as a function
of y such that varying x leads to variations in y. Once specified, the function
can then be used as the structural equation between the A and B nodes. Our
strategy for solving the problem is first to determine each of the lengths of the
line segments OK and OL in Figure 12 as a function of y. We can then use
this information to specify x as a function of y. The problem can be solved as
follows. Let Δ represent the length |AB| in the original figure and Δ + y be
the distance between A and B in any transformed version of the figure ABCD.
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First, specify |OK| as a function of Δ + y:

|EK| = |EF | + |FK|.
|EF | = |BT | because ETBF is a rectangle.
|EK| = |BT | + |FK|.
|FK|
|BK| = sin(�ABC − 90◦).
|FK| = sin(�ABC − 90◦) × |BK|.
|EK| = |BT | + sin(�ABC − 90◦) × |BK|.
|EK|
|OK| = cos(�OKE).

|OK| = |EK|
cos(�OKE) .

|OK| = |BT |+sin(�ABC−90◦)×|BK|
cos(�OKE) .

Since |BT | = (0.5 × Δ) + y, it follows that:

|OK| = (0.5×Δ)+y+sin(�ABC−90◦)×|BK|
cos(�OKE) .

Next, we specify the length |OL| as a function of Δ + y. By parallel reasoning,
it follows that:

|OL| = (0.5×Δ)+y+sin(�ABC−90◦)×|BL|
cos(�OLG) .

Now, since |ML| = |MO| + |OL| and |NK| = |NO| + |OK| and since |ML| −
|KN | = x it follows that:

x =
(
|MO| + (0.5×Δ)+y+sin(�ABC−90◦)×|BL|

cos(�OLG)

)

−
(
|NO| + (0.5×Δ)+y+sin(�ABC−90◦)×|BK|

cos(�OKE)

)
.

We can now swap B for x and A for y to yield the final structural equation,
namely:

B = |MO| − |NO| + (0.5×Δ)+A+sin(�ABC−90◦)×|BL|
cos(�OLG)

− (0.5×Δ)+A+sin(�ABC−90◦)×|BK|
cos(�OKE) .

Finally, we want to remove the points E, G, and O from the equation, so
that the equation properly reflects the isosceles trapezoid ABCD depicted back
in Figure 1. To do that, we express each of the angles �OLG and �OKE as
180◦ minus its two adjacent angles, �KLO and �GLC for �OLG and �OKL
and �BKE for �OKE (see Figure 11) but without mentioning E, G, and O.

�OLG = 180◦ − (�KLO + �GLC)
= 180◦ − �KLM − �ABC = �BCD − �KLM.

�OKE = 180◦ − (�OKL + �BKE)
= 180◦ − (�NKL + (180◦ − �ABC)) = �ABC − �NKL.
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Fig. 12. A Geometric Proof of |ML| = |KN |.

Our structural equation, using the substitutions just outlined, becomes

B = |MO| − |NO| + (0.5×Δ)+A+sin(�ABC−90◦)×|BK|
cos(�BCD−�KLM)

− (0.5×Δ)+A+sin(�ABC−90◦)×|BL|
cos(�ABC−�NKL) .

This final structural equation gets us what we want. When we change the value
of A there will be a corresponding change to the value of B. The change to A
encoded in the structural equation is a change to the amount we are extending
AB. The resulting change to B is the corresponding difference between the
lengths |ML| and |KN | that results from the twiddle to A. The entire model
then adequately captures the pattern of counterfactual dependence whereby
gradual deformation of the object results in a widening inequality between
|ML| and |KN |.

4. EXPLANATORY AND NON-EXPLANATORY PROOFS
In the previous section we showed how to model a case of intra-mathematical
explanation using standard counterfactual machinery. In this section we will
turn to the topic of explanatory versus non-explanatory proofs. Our contention
is that the difference between explanatory and non-explanatory proofs can be
captured by the patterns of counterfactual dependence underlying a given case
of intra-mathematical explanation. To show this, we will consider three proofs
of the fact that |ML| = |KN | in the isosceles trapezoid ABCD. The first of
these, given by Lange, is the proof discussed in § 3, and is the one that Lange
deems to be explanatory. He provides two alternative proofs that he takes to
be not explanatory.

D
ow

nloaded from
 https://academ

ic.oup.com
/philm

at/article/28/1/1/5650475 by M
onash U

niversity user on 08 August 2020



24 • Baron, Colyvan, Ripley

The first of these proceeds algebraically:12

A proof could proceed by brute-force coordinate geometry: first let D’s
coordinates be (0,0), C’s be (0,c), A’s be (a,s) and B’s be (b,s), and then
solve algebraically for the two distances ML and KN, showing that they
are equal. [Lange, 2017, p. 245]

The second proof is geometric, and proceeds as follows (see Figure 12):

Draw the line from N perpendicular to CD; call their intersection P (see
fig. [12]); likewise draw link LS. Consider triangles DNP and CLS: angles
D and C are congruent (since the trapezoid is isosceles), ND = LC (given),
and the two right angles are congruent. Hence, by having two angles and
the non-included side congruent, �DNP = �CLS, so their corresponding
sides NP and LS are congruent. They are also parallel (being perpendic-
ular to the same line). That these two opposite sides are both congruent
and parallel shows PNLS to be a parallelogram. Hence, NL is parallel to
DC. By the same argument with two new auxiliary lines, AB is parallel
to MK. Therefore, MK and NL are parallel (since they are parallel to
lines that are parallel to each other), so MKLN is a trapezoid. Since MN
= AD − AM − ND, KL = BC − BK − LC, AM = BK, AD = BC and
ND = LC, it follows that MN = KL. As corresponding angles, �KLN =
�LCS; since �CLS = �DNP, �LCS = �NDP; as corresponding angles,
�NDP = �MNL. Therefore, �KLN = �MNL. From this last (and that
NL = NL, MN = KL), it follows (by having two sides and their included
angle congruent) that �MNL = �KLN, and so their corresponding sides
ML and KN are the same length. [Lange, 2017, p. 246]

Let us take each of these proofs in turn, starting with the algebraic proof.

12The C coordinate in Lange’s geometric proof should be (c, 0). As the editor for this
journal, Robert Thomas, has pointed out to us, Lange’s ‘brute-force’ proof contains an
error. One must also specify that b = c−a, otherwise one has failed to specify an isosceles
trapezoid. Rather than specifying a further condition, we ought to include this information
in the specification of B as follows: let B be (c − a, s). From there, Thomas provides the
proof as follows:

M needs to be (ta, ts), N to be (ra, rs), where r and t are arbitrary parameters
strictly between 0 and 1. Then for the needed equalities K is [(1 − t)c + t(c − a), ts]
and L is [(1 − r)c + r(c − a), rs] from the standard formula for dividing a line
segment in a ratio used twice. These complicated-looking co-ordinates simplify to
(c− ta, ts) and (c− ra, rs) respectively. One can then just write down the distances
squared from the distance formula, |ML|2 = (c−ra−ta)2 +(rs−ts)2 and |NK|2 =
(c − ta − ra)2 + (ts − rs)2, obviously equal.

We are grateful to Robert Thomas for providing us with this proof.
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Fig. 13. Symmetry-preserving transformations of ABCD around the origin
(0,0).

4.1. Algebraic Proof
The central moving part of the algebraic proof is the coordinatisation of the
isosceles trapezoid ABCD in a Cartesian plane. The algebra that follows (which
we see no need to go into) is nothing more than a way of moving from the
underlying coordinatisation to the fact that |ML| = |KN |. If we think of the
matter in counterfactual terms, then for this proof to be a genuine explanation
of the fact at issue at least CF3 would need to be true (see below), since
this counterfactual links the coordinatisation (the explanans) to the fact that
|ML| = |KN | (the explanandum):

CF3 If the coordinates of isosceles trapezoid ABCD had not been D =
(0, 0), C = (c, 0), A = (a, s), and B = (c − a, s), then it would not have
been the case that |ML| = |KN |.

In order to evaluate CF3, we hold fixed all of the intrinsic facts about the
trapezoid ABCD plus general mathematical principles and any mathematical
facts that are upstream of the facts about ABCD. We then make a twiddle by
re-coordinatising ABCD. There are many different ways to re-coordinatise the
isosceles trapezoid ABCD that do not break the symmetry of the object and
thus do not result in |ML| �= |KN |. We can, for example, reflect across the x
and y axes (see Figure 13) or choose different coordinate systems.
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Of course, there are also coordinatisations that will break the symmetry of
ABCD. (E.g., non-linear translations of a Cartesian coordinate system such
as: x �→ x2; y �→ y.) There are an infinite number of those as well. In such
coordinatisations, |ML| �= |KN |. What we have, then, is an infinite number
of alternative coordinatisations in which |ML| = |KN | and an infinite number
in which |ML| �= |KN |. We have no reason to prefer the symmetry-preserving
cases over the symmetry-breaking cases when evaluating the counterfactual.
The two cases are equally similar when it comes to the mathematical facts that
we are holding fixed. It follows that CF3 is false: it is not the case that an
alteration to the coordinates of ABCD would result in |ML| �= |K|N. At best,
it might have that result.

4.2. Geometric Proof
The first thing we need to do is clean up Lange’s geometric proof.13 As it stands
the proof is inelegant. A more concise version of the proof can be constructed as
follows. We begin by assuming that in a quadrilateral with a base and two equal
opposite sides adjacent to it, the base angles are equal and the top is parallel to
the base if and only if the quadrilateral is a trapezoid. It follows immediately
that �ADC = �BCD because ABCD is a trapezoid. Next, draw the line NL.
NLCD is a trapezoid and so it follows that NL is parallel to DC. NL is also
parallel to AB (because DC is). ABLN is also a trapezoid, and so �MNL =
�NLK. Since equals subtracted from equals are equal, |AN | = |AD|− |ND| =
|BC|−|LC| = |BL| and |MN | = |AN |−|AM | = |BL|−|BK| = |KL|. It follows
that the �MNL and �NLK are congruent because |MN | = |KL|, NL is
common between the two triangles and �MNL ≡ �NLK. Thus, |ML| = |NK|
since they are corresponding sides of �MNL and �NLK.

The proof hangs on the following facts:

(1) NL and AB are parallel;
(2) NL and DC are parallel;
(3) �MNL = �NLK;
(4) |MN | = |KL|;
(5) �MNL ≡ �KLN .

This gives us five counterfactuals to consider:
CF4 If it had not been the case that NL and AB are parallel then it would

not have been the case that |ML| = |KN |.
CF5 If it had not been the case that NL and DC are parallel then it would

not have been the case that |ML| = |KN |.
CF6 If it had not been the case that �NLK = �MNL then it would not

have been the case that |ML| = |KN |.

13We are very grateful to Robert Thomas for supplying us with a version of the cleaned-
up proof.
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Fig. 14. Situations that make CF4–CF8 true (LHS) and situations that
make CF4–CF8 false (RHS).

CF7 If it had not been the case that |MN | = |KL|, then it would not have
been the case that |ML| = |KN |

CF8 If it had not been the case that �MNL ≡ �KLN then it would not
have been the case that |ML| = |KN |.

Notice that none of these counterfactuals mentions anything to do with the
horizontal reflection of α. So we are under no obligation to hold fixed α when
evaluating these counterfactuals. Indeed, because each of these counterfactuals
involves altering α in some manner in order to make the antecedent true, we
cannot hold α fixed without running into a contradiction.

CF4–CF8 are all false. Rather than going through all five counterfactuals one
by one, we can gain a rough sense of why these five counterfactuals are false by
comparing two pictures. The left-hand case in Figure 14 depicts a situation in
which the antecedents of all five counterfactuals are true: NL is not parallel with
AB or DC; �KLN �= �MNL; |MN | �= |KL| and �MNL �≡ �KLN , and yet
the consequents are all false because |ML| = |KN | (this can be checked using
the algebraic method discussed in § 5.1). The right-hand case in Figure 14, by
contrast, depicts a situation in which the antecedents of all five counterfactuals
are true, and the consequents are also true because |MN | �= |KL|.

The difficulty presented by Figure 14 should by now be familiar. In order to
evaluate counterfactuals CF4–CF8 we hold the same things fixed in each case.
In particular, we hold fixed as much as we can about the intrinsic properties
mentioned in the antecedents, compatible with realising those antecedents. In
addition, we hold fixed general mathematical principles and any mathematical
facts that are upstream of the case at issue. We do not hold fixed the features
that are mentioned in the consequent. There are two very similar ways to realise
the antecedents, given what we are holding fixed. Figure 14 depicts two such
cases. In the right-hand diagram, we have realised the antecedents in such a way
that the counterfactuals all turn out to be false because |ML| �= |KN |. In the
left-hand diagram we have realised the antecedents of CF4–CF8 so that they all
turn out to be true because |ML| = |KN |. It is difficult to discern the two cases
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visually, given how similar they are to one another. More importantly, these
two cases are both equally similar to the actual situation, and so we have a tie.
Without a way to break the tie, we cannot conclude that the counterfactuals
are true.

4.3. Explanatory versus Non-Explanatory Proofs
It is striking that there is a difference in the pattern of counterfactual depen-
dence between the proof of the fact that |ML| = |KN | that Lange deems to be
explanatory, and the proofs that he does not deem to be explanatory. The rea-
son for this difference in the patterns seems to line up with Lange’s account of
why the explanatory proof in this case is explanatory, while the others are not.
According to Lange, the explanatory proof is explanatory because it appeals
to what is really doing the explanatory work, namely the symmetry of the
figure ABCD. The other proofs do not appeal to this symmetry and so, in
an explanatory sense at least, miss the point. Our own counterfactual analysis
lends support to this idea. Apparently the only case in which we can get real
traction on the explanation for |ML| = |KN | using counterfactuals is when
we look at alterations involving the horizontal reflection of α. When we look
at other kinds of alterations — alterations that correspond to the facts used
to derive |ML| = |KN | in other proofs that ignore the symmetry of ABCD
— none of these facts is counterfactually linked to the explanandum in the
right way. Looking at the counterfactual structure of a given case of intra-
mathematical explanation, then, may, at the very least, be a useful tool for
sorting explanatory from non-explanatory proofs. It would also seem to follow
that a counterfactual theory of intra-mathematical explanation would have a
good chance of capturing the important distinction between explanatory and
non-explanatory proofs more generally.

5. IMPOSSIBLE TWIDDLES
So far we have shown how to model a case of intra-mathematical explanation.
One might worry, however, that we have made matters easy for ourselves by
focusing on a purely geometric case. None of the counterfactual manipulations
to this case that we have considered involves impossibilities in the ramification
stage. After all, we are able to graph the various counterfactual alterations
that are needed to model the intra-mathematical explanation for why it is
that |ML| = |KN | in the isosceles trapezoid ABCD (without drawing any
impossible objects). We recognise, however, that at least some cases of intra-
mathematical explanation will involve the consideration of impossibilities in the
ramification stage. In this final section we will show how to extend the basic
counterfactual machinery developed so far to one such case.

Consider the following mathematical fact: the product of any three con-
secutive, non-zero natural numbers is divisible by 6. The explanation for this
fact appeals to two further facts. First, the fact that for any three consecu-
tive nonzero natural numbers, at least one of those numbers is even and thus
divisible by 2. Second, the fact that for any three consecutive nonzero natural
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numbers, exactly one is divisible by 3. From these two facts it follows that for
any three consecutive numbers, their product is divisible by 3 × 2 = 6 [Lange,
2014, pp. 510–511].

As with our geometric case, the modelling of this basic number-theoretic case
proceeds in three stages. First, we show that the explanandum counterfactually
depends on the explanans. Then we demonstrate that the reverse is not true.
Finally, we situate the example inside a structural equation model.

Because the explanation stated above rests on two salient facts, there are
really two counterfactuals that correspond to the case. The two counterfactuals
at issue are:

CF9 If it were not the case that for any three consecutive non-zero natural
numbers, at least one of them is even, then it would not be the case
that the product of any three consecutive, non-zero natural numbers is
divisible by 6.

CF10 If it were not the case that for any three consecutive non-zero natural
numbers, at least one of them is divisible by 3, then it would not be the
case that the product of any three consecutive, non-zero natural numbers
is divisible by 6.

We can evaluate CF9 as follows. First, hold fixed as much as we can about the
intrinsic properties of numbers. Next, hold fixed as many general mathematical
facts as we can, along with facts that are mathematically upstream from the
numbers. This includes theorems about the natural numbers, so long as they are
not downstream of the consequents of the above counterfactuals (more on this
in a moment). Next, we twiddle the natural numbers by releasing only whatever
mathematical theorems must be released to make it no longer the case that for
any three consecutive non-zero natural numbers, at least one of them is even.
The minimal way to do this is to pick three consecutive natural numbers and
imagine that none of them is even. Finally, we consider the ramifications of
this twiddle throughout the natural numbers in order to see whether or not the
product of any three consecutive, non-zero natural numbers is divisible by 6.

By using this reasoning we can see that CF9 is true. Consider the numbers
503, 504 and 505. 503 × 504 × 505 = 128, 023, 560. The product of these three
consecutive numbers is divisible by 6: 128, 023, 560/6 = 21, 337, 260. Now, twid-
dle the natural numbers by making it so that none of 503, 504, or 505 is even.
The twiddle ramifies as follows: the product of two natural numbers is even (if
and) only if one of the numbers is. So (503 × 504) × 505 is even only if one of
503 × 504 or 505 is. Under the twiddle in question, 505 still is not even; so we
can turn to 503 × 504. By the same reasoning, this is even only if one of 503
or 504 is. Under the twiddle in question, neither of these is even. So 503 × 504
is not even either, and thus (503 × 504) × 505 is not even. Now, a number is
divisible by 6 only if it is even; so (503×504)×505 is not divisible by 6. So under
this twiddle, there are three consecutive numbers with a product that is not
divisible by 6 — so it is not the case that the product of any three consecutive,
non-zero natural numbers is divisible by 6.
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Similar reasoning renders CF10 true. Hold the same things fixed as when
evaluating CF9. Now, consider again the numbers 503, 504 and 505. This time,
however, twiddle these numbers by making it so that none of 503, 504 or 505
is divisible by three. If none of 503, 504 or 505 is divisible by 3, then their
product will not be divisible by 3 either. A number is divisible by 6 only if it is
divisible by 3. So (503 × 504) × 505 is not divisible by 6. So, once again, under
the twiddle in question there are three consecutive numbers with a product
that is not divisible by 6.

Now, one may worry that the counterfactual reasoning sketched above for
CF9 is a bit quick. If we continue to carry the ramifications of the twiddles in
each case through the mathematical structure of the natural numbers, then we
may well be forced to give up some fairly central number-theoretic theorems.
For instance, consider the theorem that the sum of two even numbers is always
an even number. If we make it such that 504 is not even, then this principle
is called into question. After all, 500 and 4 are both even, and their sum is
504. If we hold fixed the evenness of 500 and 4, that their sum is 504, and
the principle in question, we end up with a contradiction when we twiddle the
evenness of 504. To avoid contradiction, then, we must not hold all of these fixed.
This is just one example; the ramifications of making 504 odd may be great
indeed. So great that one may well worry about the coherency of counterfactual
reasoning of the kind under consideration. But we have already addressed this
kind of worry. To conduct the ramification, chase the contradictions out of the
immediate vicinity so that they may be ignored.

Demonstrating the truth of CF9 and CF10 completes the first stage of mod-
elling the case under consideration using counterfactuals. The second stage is
to show that the following counterfactuals are false:

CF11 If it were not the case that the product of any three consecutive, non-
zero natural numbers is divisible by 6, it would not be the case that at
least one of those three numbers is even.

CF12 If it were not the case that the product of any three consecutive, non-
zero natural numbers is divisible by 6, it would not be the case that at
least one of those three numbers is divisible by 3.

Consider, first, CF11. Suppose it were not the case that the product of any
three consecutive, non-zero natural numbers is divisible by 6. It would not
follow that at least one of those numbers is not even. Why? Because the fact
that one of those three numbers is not even is not the only situation in which
any three consecutive, non-zero natural numbers is not divisible by 6. As we
have seen, if none of the numbers is divisible by 3, then the same result would
follow. Symmetrical considerations apply to CF12. CF12 is false because if it
were not the case that the product of any three consecutive, non-zero natural
numbers is divisible by 6, then it would not follow that none of those numbers
is divisible by 3. For it may turn out instead that none of those numbers is
even.

To sharpen the point it is useful to draw an analogy between the number-
theoretic case under consideration and cases of joint causation. In a case of
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joint causation, there are two events E and E∗ such that E and E∗ are each
necessary for the occurrence of an event E∗∗, and jointly (but not individually)
sufficient. Such cases can be depicted as forking causal structures in which two
events both contribute to the causation of a third event. The forking structure
induces a counterfactual asymmetry: if E had not occurred then E∗∗ would not
have occurred, and if E∗ had not occurred then E∗∗ would not have occurred.
But it would be wrong to say that if E∗∗ had not occurred then E would not
have occurred (because it may have been E∗ that failed), and, symmetrically, it
is wrong to say that if E∗∗ had not occurred then E∗ would not have occurred
(because it may have been E that failed).

Horwich appeals to the fork asymmetry as a basis for the asymmetry of
causation (see [Horwich, 1987]). Our suggestion is that in cases of intra-
mathematical explanation, similar fork asymmetries between mathematical
facts underwrite counterfactual asymmetries of the kind demonstrated between
CF9 and CF10 on the one hand, and CF11 and CF12 on the other.

To draw this last point out a bit more, it is useful to move to the third stage
of our modelling procedure: situating the case inside the structural equation
modelling framework. The model we will use to represent counterfactual rela-
tionships in the number-theory case is in Figure 15. To keep things simple, each
node in the diagram is a full proposition; each can be true or false. The trans-
lation schema for the mathematical facts featured in the explanation is just this:

A For any three consecutive numbers, at least one of those numbers is
even.

B For any three consecutive numbers, at least one of those numbers is
divisible by 3.

C The product of any three consecutive non-zero natural numbers is
divisible by 6.

Each node in the diagram takes value 1 or 0, according to whether the
proposition it represents is true or false, respectively. We suppose that all the
exogenous nodes take value 1. The structural equations we use are simple: each
endogenous node takes the minimum of the values of the nodes that feed into
it. This yields the following structural equations: A = 1; B = 1; C = min(A, B).

The structural equation model captures the twiddles to the mathematics
involved in evaluating CF9 and CF10 discussed in the previous section. Suppose
we twiddle node A by setting its value to 0. The value of C will then be 0.
Similarly, suppose we twiddle node B by setting its value to 0. Again, the value
of C will be 0.

Because this is a directed graph, the asymmetry of the counterfactual rela-
tionships discussed above is encoded within the graph itself. Accordingly,
setting C’s value to 0 will not result in A or B taking the value 0, since that
relationship is not reflected in the structural equations for the system. What we
want to take note of, however, is the forking structure of the case. This forking
structure is analogous to the forking structure of structural equation models of
joint causation: cases where two events together contribute to the production
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Fig. 15. Directed-graph model of CF9 and CF10.

of some event. It is interesting to draw out this parallel between the mathe-
matical and causal cases, since it highlights a suggestive similarity between the
explanatory structure of ordinary causal explanations and mathematical ones.
This, in turn, speaks to the broad unificatory ambitions with which this paper
began.

6. CONCLUDING REMARKS
In this paper, we have shown that there is good sense to be made of coun-
terfactuals within mathematics and, moreover, that there is scope to apply
our understanding of counterfactuals to cases of intra-mathematical explana-
tion. The value of considering the application of counterfactuals to cases of
intra-mathematical explanation lies with the project of developing a unified
theory of explanation: a theory that can handle intra-mathematical explana-
tion, extra-mathematical explanation, and physical explanation, treating all
three as instances of a single phenomenon. No matter exactly how one con-
ceives of that broader unificatory project, it is plausible that counterfactuals
have some role to play; so by extending our understanding of counterfactuals to
intra-mathematical cases, we have made progress toward the goal of unifying
explanations within science.
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